These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 19792062)

  • 1. Glass transition and random walks on complex energy landscapes.
    Baronchelli A; Barrat A; Pastor-Satorras R
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):020102. PubMed ID: 19792062
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: the potential energy landscape ensemble.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224503. PubMed ID: 18081402
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Topological description of the aging dynamics in simple glasses.
    Angelani L; Di Leonardo R; Parisi G; Ruocco G
    Phys Rev Lett; 2001 Jul; 87(5):055502. PubMed ID: 11497782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential energy and free energy landscapes.
    Wales DJ; Bogdan TV
    J Phys Chem B; 2006 Oct; 110(42):20765-76. PubMed ID: 17048885
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Potential energy landscapes for the 2D XY model: minima, transition states, and pathways.
    Mehta D; Hughes C; Schröck M; Wales DJ
    J Chem Phys; 2013 Nov; 139(19):194503. PubMed ID: 24320335
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Global perspectives on the energy landscapes of liquids, supercooled liquids, and glassy systems: geodesic pathways through the potential energy landscape.
    Wang C; Stratt RM
    J Chem Phys; 2007 Dec; 127(22):224504. PubMed ID: 18081403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energy landscapes: some new horizons.
    Wales DJ
    Curr Opin Struct Biol; 2010 Feb; 20(1):3-10. PubMed ID: 20096562
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase transition in random adaptive walks on correlated fitness landscapes.
    Park SC; Szendro IG; Neidhart J; Krug J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042707. PubMed ID: 25974527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Geometric approach to the dynamic glass transition.
    Grigera TS; Cavagna A; Giardina I; Parisi G
    Phys Rev Lett; 2002 Feb; 88(5):055502. PubMed ID: 11863741
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the dynamics of glass-forming liquids from the properties of the potential energy landscape.
    Banerjee S; Dasgupta C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021501. PubMed ID: 22463213
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gels and glasses in a single system: evidence for an intricate free-energy landscape of glassy materials.
    Jabbari-Farouji S; Wegdam GH; Bonn D
    Phys Rev Lett; 2007 Aug; 99(6):065701. PubMed ID: 17930840
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new heuristic method for approximating the number of local minima in partial RNA energy landscapes.
    Albrecht AA; Day L; Abdelhadi Ep Souki O; Steinhöfel K
    Comput Biol Chem; 2016 Feb; 60():43-52. PubMed ID: 26657221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Random energy model for dynamics in supercooled liquids: N dependence.
    Keyes T; Chowdhary J; Kim J
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Nov; 66(5 Pt 1):051110. PubMed ID: 12513470
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surveying the free energy landscapes of continuum models: Application to soft matter systems.
    Kusumaatmaja H
    J Chem Phys; 2015 Mar; 142(12):124112. PubMed ID: 25833570
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evolving network representation learning based on random walks.
    Heidari F; Papagelis M
    Appl Netw Sci; 2020; 5(1):18. PubMed ID: 32215318
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy landscape of a lennard-jones liquid: statistics of stationary points.
    Broderix K; Bhattacharya KK; Cavagna A; Zippelius A; Giardina I
    Phys Rev Lett; 2000 Dec; 85(25):5360-3. PubMed ID: 11135996
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Minima hopping guided path search: an efficient method for finding complex chemical reaction pathways.
    Schaefer B; Mohr S; Amsler M; Goedecker S
    J Chem Phys; 2014 Jun; 140(21):214102. PubMed ID: 24907985
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring canyons in glassy energy landscapes using metadynamics.
    Thirumalaiswamy A; Riggleman RA; Crocker JC
    Proc Natl Acad Sci U S A; 2022 Oct; 119(43):e2210535119. PubMed ID: 36256806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying communities within energy landscapes.
    Massen CP; Doye JP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Apr; 71(4 Pt 2):046101. PubMed ID: 15903720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phase transition and landscape statistics of the number partitioning problem.
    Stadler PF; Hordijk W; Fontanari JF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 2):056701. PubMed ID: 12786316
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.