These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
144 related articles for article (PubMed ID: 19792070)
1. Entropic effects in channel-facilitated transport: interparticle interactions break the flux symmetry. Berezhkovskii AM; Pustovoit MA; Bezrukov SM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):020904. PubMed ID: 19792070 [TBL] [Abstract][Full Text] [Related]
2. Fluxes of non-interacting and strongly repelling particles through a single conical channel: Analytical results and their numerical tests. Berezhkovskii AM; Pustovoit MA; Bezrukov SM Chem Phys; 2010 Oct; 375(2-3):523-528. PubMed ID: 21057663 [TBL] [Abstract][Full Text] [Related]
3. Entropic particle transport in periodic channels. Burada PS; Schmid G; Talkner P; Hänggi P; Reguera D; Rubí JM Biosystems; 2008; 93(1-2):16-22. PubMed ID: 18462863 [TBL] [Abstract][Full Text] [Related]
4. Memoryless control of boundary concentrations of diffusing particles. Singer A; Schuss Z; Nadler B; Eisenberg RS Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061106. PubMed ID: 15697340 [TBL] [Abstract][Full Text] [Related]
5. Interpretation of the Ussing flux ratio from the fluctuation theorem. Hsieh CP Biophys Chem; 2009 Jan; 139(1):57-62. PubMed ID: 18990481 [TBL] [Abstract][Full Text] [Related]
6. Channel-facilitated diffusion boosted by particle binding at the channel entrance. Pagliara S; Dettmer SL; Keyser UF Phys Rev Lett; 2014 Jul; 113(4):048102. PubMed ID: 25105657 [TBL] [Abstract][Full Text] [Related]
7. Optimizing transport of metabolites through large channels: molecular sieves with and without binding. Berezhkovskii AM; Bezrukov SM Biophys J; 2005 Mar; 88(3):L17-9. PubMed ID: 15626697 [TBL] [Abstract][Full Text] [Related]
8. [Molecular dynamics of water and hydrated ion in a transmembrane channel]. Aĭt'ian SKh Dokl Akad Nauk SSSR; 1988; 300(3):721-4. PubMed ID: 2458893 [No Abstract] [Full Text] [Related]
9. Impact of Interparticle Interaction on Thermodynamics of Nano-Channel Transport of Two Species. Bauer WR Entropy (Basel); 2020 Mar; 22(4):. PubMed ID: 33286150 [TBL] [Abstract][Full Text] [Related]
10. First-passage times in conical varying-width channels biased by a transverse gravitational force: Comparison of analytical and numerical results. Pompa-García I; Castilla R; Metzler R; Dagdug L Phys Rev E; 2022 Dec; 106(6-1):064137. PubMed ID: 36671151 [TBL] [Abstract][Full Text] [Related]
11. Collective diffusion model for ion conduction through microscopic channels. Liu Y; Zhu F Biophys J; 2013 Jan; 104(2):368-76. PubMed ID: 23442858 [TBL] [Abstract][Full Text] [Related]
12. Self-consistent analytic solution for the current and the access resistance in open ion channels. Luchinsky DG; Tindjong R; Kaufman I; McClintock PV; Eisenberg RS Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021925. PubMed ID: 19792169 [TBL] [Abstract][Full Text] [Related]
13. Ion permeation through the alpha-hemolysin channel: theoretical studies based on Brownian dynamics and Poisson-Nernst-Plank electrodiffusion theory. Noskov SY; Im W; Roux B Biophys J; 2004 Oct; 87(4):2299-309. PubMed ID: 15454431 [TBL] [Abstract][Full Text] [Related]
14. Theoretical study of a membrane channel gated by ATP. Orlandi JG; Sancho JM Eur Phys J E Soft Matter; 2009 Jul; 29(3):329-36. PubMed ID: 19575251 [TBL] [Abstract][Full Text] [Related]
15. Entropy effects on the ion-diffusion rate in transmembrane protein channels. Brickmann J; Fischer W Biophys Chem; 1983 Apr; 17(3):245-58. PubMed ID: 6190517 [TBL] [Abstract][Full Text] [Related]
16. Mapping Intrachannel Diffusive Dynamics of Interacting Molecules onto a Two-Site Model: Crossover in Flux Concentration Dependence. Berezhkovskii AM; Bezrukov SM J Phys Chem B; 2018 Dec; 122(49):10996-11001. PubMed ID: 29957941 [TBL] [Abstract][Full Text] [Related]
17. Brownian dynamics study of flux ratios in sodium channels. Vora T; Corry B; Chung SH Eur Biophys J; 2008 Nov; 38(1):45-52. PubMed ID: 18594804 [TBL] [Abstract][Full Text] [Related]
18. Brownian dynamic model of the glycine receptor chloride channel: effect of the position of charged amino acids on ion membrane currents. Boronovsky SE; Seraya IP; Nartsissov YR Syst Biol (Stevenage); 2006 Sep; 153(5):394-7. PubMed ID: 16986325 [TBL] [Abstract][Full Text] [Related]
19. Ion transport across biological membranes. Diffusion in water solution or conduction in the solid state? Rosenbusch JP Biophys Chem; 1988 Feb; 29(1-2):79-84. PubMed ID: 2451941 [TBL] [Abstract][Full Text] [Related]
20. [Resonance phenomena in membranes containing ion channels with inactivation]. Markevich NI; Sel'kov EE Biofizika; 1984; 29(5):816-21. PubMed ID: 6095926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]