These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 19792094)
1. Many-body reduced fidelity susceptibility in Lipkin-Meshkov-Glick model. Ma J; Wang X; Gu SJ Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021124. PubMed ID: 19792094 [TBL] [Abstract][Full Text] [Related]
2. Reduced fidelity susceptibility and its finite-size scaling behaviors in the Lipkin-Meshkov-Glick model. Ma J; Xu L; Xiong HN; Wang X Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Nov; 78(5 Pt 1):051126. PubMed ID: 19113114 [TBL] [Abstract][Full Text] [Related]
3. Quantum criticality of the Lipkin-Meshkov-Glick model in terms of fidelity susceptibility. Kwok HM; Ning WQ; Gu SJ; Lin HQ Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 1):032103. PubMed ID: 18851088 [TBL] [Abstract][Full Text] [Related]
4. Classical description of the parameter space geometry in the Dicke and Lipkin-Meshkov-Glick models. Gonzalez D; Gutiérrez-Ruiz D; Vergara JD Phys Rev E; 2021 Jul; 104(1-1):014113. PubMed ID: 34412288 [TBL] [Abstract][Full Text] [Related]
5. Exact spectrum of the Lipkin-Meshkov-Glick model in the thermodynamic limit and finite-size corrections. Ribeiro P; Vidal J; Mosseri R Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021106. PubMed ID: 18850785 [TBL] [Abstract][Full Text] [Related]
6. Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model. Orús R; Dusuel S; Vidal J Phys Rev Lett; 2008 Jul; 101(2):025701. PubMed ID: 18764198 [TBL] [Abstract][Full Text] [Related]
7. Shortcut to adiabaticity in the Lipkin-Meshkov-Glick model. Campbell S; De Chiara G; Paternostro M; Palma GM; Fazio R Phys Rev Lett; 2015 May; 114(17):177206. PubMed ID: 25978261 [TBL] [Abstract][Full Text] [Related]
8. Global quantum discord in the Lipkin-Meshkov-Glick model at zero and finite temperatures. Bao J; Liu YH; Guo B J Phys Condens Matter; 2021 Sep; 33(49):. PubMed ID: 34517354 [TBL] [Abstract][Full Text] [Related]
10. Nonadiabatic dynamics of the excited states for the Lipkin-Meshkov-Glick model. Kopylov W; Schaller G; Brandes T Phys Rev E; 2017 Jul; 96(1-1):012153. PubMed ID: 29347272 [TBL] [Abstract][Full Text] [Related]
11. Role of mixed permutation symmetry sectors in the thermodynamic limit of critical three-level Lipkin-Meshkov-Glick atom models. Calixto M; Mayorgas A; Guerrero J Phys Rev E; 2021 Jan; 103(1-1):012116. PubMed ID: 33601600 [TBL] [Abstract][Full Text] [Related]
12. Quantum fidelity and thermal phase transitions. Quan HT; Cucchietti FM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Mar; 79(3 Pt 1):031101. PubMed ID: 19391896 [TBL] [Abstract][Full Text] [Related]
13. Irreversible processes without energy dissipation in an isolated Lipkin-Meshkov-Glick model. Puebla R; Relaño A Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012101. PubMed ID: 26274119 [TBL] [Abstract][Full Text] [Related]
14. Thermodynamical limit of the Lipkin-Meshkov-Glick model. Ribeiro P; Vidal J; Mosseri R Phys Rev Lett; 2007 Aug; 99(5):050402. PubMed ID: 17930734 [TBL] [Abstract][Full Text] [Related]
15. Non-Markovianity of a Central Spin Interacting with a Lipkin-Meshkov-Glick Bath via a Conditional Past-Future Correlation. Han L; Zou J; Li H; Shao B Entropy (Basel); 2020 Aug; 22(8):. PubMed ID: 33286664 [TBL] [Abstract][Full Text] [Related]
16. Quantum phase transitions in networks of Lipkin-Meshkov-Glick models. Sorokin AV; Bastidas VM; Brandes T Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):042141. PubMed ID: 25375472 [TBL] [Abstract][Full Text] [Related]
18. Scaling behavior for a class of quantum phase transitions. Wang WG; Qin P; Wang Q; Benenti G; Casati G Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021124. PubMed ID: 23005739 [TBL] [Abstract][Full Text] [Related]
19. Dynamical quantum phase transitions in the dissipative Lipkin-Meshkov-Glick model with proposed realization in optical cavity QED. Morrison S; Parkins AS Phys Rev Lett; 2008 Feb; 100(4):040403. PubMed ID: 18352244 [TBL] [Abstract][Full Text] [Related]
20. Characterizing the Lipkin-Meshkov-Glick model excited-state quantum phase transition using dynamical and statistical properties of the diagonal entropy. Wang Q; Pérez-Bernal F Phys Rev E; 2021 Mar; 103(3-1):032109. PubMed ID: 33862777 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]