These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 19792099)

  • 1. Extinction in the Lotka-Volterra model.
    Parker M; Kamenev A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021129. PubMed ID: 19792099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Z-type control of populations for Lotka-Volterra model with exponential convergence.
    Zhang Y; Yan X; Liao B; Zhang Y; Ding Y
    Math Biosci; 2016 Feb; 272():15-23. PubMed ID: 26644036
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Asymptotic stability of a modified Lotka-Volterra model with small immigrations.
    Tahara T; Gavina MKA; Kawano T; Tubay JM; Rabajante JF; Ito H; Morita S; Ichinose G; Okabe T; Togashi T; Tainaka KI; Shimizu A; Nagatani T; Yoshimura J
    Sci Rep; 2018 May; 8(1):7029. PubMed ID: 29728625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lotka-Volterra system in a random environment.
    Dimentberg MF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Mar; 65(3 Pt 2A):036204. PubMed ID: 11909209
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Lotka-Volterra predator-prey model with foraging-predation risk trade-offs.
    Krivan V
    Am Nat; 2007 Nov; 170(5):771-82. PubMed ID: 17926298
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Extinction in neutrally stable stochastic Lotka-Volterra models.
    Dobrinevski A; Frey E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 May; 85(5 Pt 1):051903. PubMed ID: 23004784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fluctuations and correlations in lattice models for predator-prey interaction.
    Mobilia M; Georgiev IT; Täuber UC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Apr; 73(4 Pt 1):040903. PubMed ID: 16711780
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of a disease affecting a predator on the dynamics of a predator-prey system.
    Auger P; McHich R; Chowdhury T; Sallet G; Tchuente M; Chattopadhyay J
    J Theor Biol; 2009 Jun; 258(3):344-51. PubMed ID: 19063903
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Almost periodic solution of non-autonomous Lotka-Volterra predator-prey dispersal system with delays.
    Meng X; Chen L
    J Theor Biol; 2006 Dec; 243(4):562-74. PubMed ID: 16934297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stochastic analysis of a pulse-type prey-predator model.
    Wu Y; Zhu WQ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 1):041911. PubMed ID: 18517660
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Survival behavior in the cyclic Lotka-Volterra model with a randomly switching reaction rate.
    West R; Mobilia M; Rucklidge AM
    Phys Rev E; 2018 Feb; 97(2-1):022406. PubMed ID: 29548111
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A solution to the accelerated-predator-satiety Lotka-Volterra predator-prey problem using Boubaker polynomial expansion scheme.
    Dubey B; Zhao TG; Jonsson M; Rahmanov H
    J Theor Biol; 2010 May; 264(1):154-60. PubMed ID: 20109470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oscillations in a size-structured prey-predator model.
    Bhattacharya S; Martcheva M
    Math Biosci; 2010 Nov; 228(1):31-44. PubMed ID: 20800071
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of predator density dependent dispersal of prey on stability of a predator-prey system.
    Mchich R; Auger P; Poggiale JC
    Math Biosci; 2007 Apr; 206(2):343-56. PubMed ID: 16455112
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitation of intraguild prey by its intraguild predator in a three-species Lotka-Volterra model.
    Shchekinova EY; Löder MG; Boersma M; Wiltshire KH
    Theor Popul Biol; 2014 Mar; 92():55-61. PubMed ID: 24325813
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The stability of the Boubaker polynomials expansion scheme (BPES)-based solution to Lotka-Volterra problem.
    Milgram A
    J Theor Biol; 2011 Feb; 271(1):157-8. PubMed ID: 21145326
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring in a Lotka-Volterra model.
    López I; Gámez M; Garay J; Varga Z
    Biosystems; 2007 Jan; 87(1):68-74. PubMed ID: 16757102
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A mutualism-parasitism system modeling host and parasite with mutualism at low density.
    Wang Y; Deangelis DL
    Math Biosci Eng; 2012 Apr; 9(2):431-44. PubMed ID: 22901072
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stochastic analysis of the Lotka-Volterra model for ecosystems.
    Cai GQ; Lin YK
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Oct; 70(4 Pt 1):041910. PubMed ID: 15600438
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Analysis of seasonal fluctuations in the Lotka-Volterra model].
    Lobanov AI; Sarancha DA; Starozhilova TK
    Biofizika; 2002; 47(2):325-30. PubMed ID: 11969172
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.