These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19792108)

  • 1. Out-of-equilibrium phase re-entrance(s) in long-range interacting systems.
    Staniscia F; Chavanis PH; De Ninno G; Fanelli D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021138. PubMed ID: 19792108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nonequilibrium tricritical point in a system with long-range interactions.
    Antoniazzi A; Fanelli D; Ruffo S; Yamaguchi YY
    Phys Rev Lett; 2007 Jul; 99(4):040601. PubMed ID: 17678344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Generalized maximum entropy approach to quasistationary states in long-range systems.
    Martelloni G; Martelloni G; de Buyl P; Fanelli D
    Phys Rev E; 2016 Feb; 93(2):022107. PubMed ID: 26986288
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Out-of-equilibrium phase transitions in the Hamiltonian mean-field model: a closer look.
    Staniscia F; Chavanis PH; De Ninno G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 May; 83(5 Pt 1):051111. PubMed ID: 21728494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Statistical mechanics of collisionless relaxation in a non-interacting system.
    de Buyl P; Mukamel D; Ruffo S
    Philos Trans A Math Phys Eng Sci; 2011 Jan; 369(1935):439-52. PubMed ID: 21149382
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nonequilibrium phase transitions and violent relaxation in the Hamiltonian mean-field model.
    Rocha Filho TM; Amato MA; Figueiredo A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):062103. PubMed ID: 23005150
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exploring the thermodynamic limit of Hamiltonian models: convergence to the Vlasov equation.
    Antoniazzi A; Califano F; Fanelli D; Ruffo S
    Phys Rev Lett; 2007 Apr; 98(15):150602. PubMed ID: 17501330
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dynamical phase transitions in long-range Hamiltonian systems and Tsallis distributions with a time-dependent index.
    Campa A; Chavanis PH; Giansanti A; Morelli G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Oct; 78(4 Pt 1):040102. PubMed ID: 18999365
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-time behavior of quasistationary states of the Hamiltonian mean-field model.
    Campa A; Giansanti A; Morelli G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041117. PubMed ID: 17994946
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quasistationarity in a model of long-range interacting particles moving on a sphere.
    Gupta S; Mukamel D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Nov; 88(5):052137. PubMed ID: 24329244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quasistationary states in the self-gravitating sheet model.
    Joyce M; Worrakitpoonpon T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Jul; 84(1 Pt 1):011139. PubMed ID: 21867145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Linear response theory for long-range interacting systems in quasistationary states.
    Patelli A; Gupta S; Nardini C; Ruffo S
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Feb; 85(2 Pt 1):021133. PubMed ID: 22463178
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Linear response theory in the Vlasov equation for homogeneous and for inhomogeneous quasistationary states.
    Ogawa S; Yamaguchi YY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jun; 85(6 Pt 1):061115. PubMed ID: 23005059
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Non-mean-field critical exponent in a mean-field model: dynamics versus statistical mechanics.
    Ogawa S; Patelli A; Yamaguchi YY
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032131. PubMed ID: 24730814
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Relaxation of a one-dimensional gravitational system.
    Valageas P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jul; 74(1 Pt 2):016606. PubMed ID: 16907203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Instability of the mean-field states and generalization of phase separation in long-range interacting systems.
    Mori T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Sep; 84(3 Pt 1):031128. PubMed ID: 22060349
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ergodicity breaking and quasistationary states in systems with long-range interactions.
    Ribeiro-Teixeira AC; Benetti FP; Pakter R; Levin Y
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Feb; 89(2):022130. PubMed ID: 25353445
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Glassy phase in the Hamiltonian mean-field model.
    Pluchino A; Latora V; Rapisarda A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 May; 69(5 Pt 2):056113. PubMed ID: 15244889
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise-induced dynamical phase transitions in long-range systems.
    Chavanis PH; Baldovin F; Orlandini E
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Apr; 83(4 Pt 1):040101. PubMed ID: 21599102
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Collisional relaxation in the inhomogeneous Hamiltonian mean-field model: Diffusion coefficients.
    Benetti FP; Marcos B
    Phys Rev E; 2017 Feb; 95(2-1):022111. PubMed ID: 28298009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.