BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

217 related articles for article (PubMed ID: 19792115)

  • 1. Slip velocity and stresses in granular Poiseuille flow via event-driven simulation.
    Chikkadi V; Alam M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021303. PubMed ID: 19792115
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrodynamics, wall-slip, and normal-stress differences in rarefied granular Poiseuille flow.
    Gupta R; Alam M
    Phys Rev E; 2017 Feb; 95(2-1):022903. PubMed ID: 28297874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Velocity distribution and the effect of wall roughness in granular Poiseuille flow.
    Vijayakumar KC; Alam M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051306. PubMed ID: 17677053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Velocity distribution for a two-dimensional sheared granular flow.
    Bose M; Kumaran V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061301. PubMed ID: 15244554
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Disentangling the role of athermal walls on the Knudsen paradox in molecular and granular gases.
    Gupta R; Alam M
    Phys Rev E; 2018 Jan; 97(1-1):012912. PubMed ID: 29448368
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Velocity correlations in dense granular shear flows: effects on energy dissipation and normal stress.
    Mitarai N; Nakanishi H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Mar; 75(3 Pt 1):031305. PubMed ID: 17500691
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Steady flow of smooth, inelastic particles on a bumpy inclined plane: hard and soft particle simulations.
    Tripathi A; Khakhar DV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041307. PubMed ID: 20481717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular-dynamics study of Poiseuille flow in a nanochannel and calculation of energy and momentum accommodation coefficients.
    Prabha SK; Sathian SP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041201. PubMed ID: 22680461
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of rough surface topography on gas slip flow in microchannels.
    Zhang C; Chen Y; Deng Z; Shi M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 2):016319. PubMed ID: 23005537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slip-flow boundary condition for straight walls in the lattice Boltzmann model.
    Szalmás L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Jun; 73(6 Pt 2):066710. PubMed ID: 16907026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Corrected second-order slip boundary condition for fluid flows in nanochannels.
    Zhang H; Zhang Z; Zheng Y; Ye H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jun; 81(6 Pt 2):066303. PubMed ID: 20866518
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nonequilibrium molecular dynamics of the rheological and structural properties of linear and branched molecules. Simple shear and poiseuille flows; instabilities and slip.
    Castillo-Tejas J; Alvarado JF; González-Alatorre G; Luna-Bárcenas G; Sanchez IC; Macias-Salinas R; Manero O
    J Chem Phys; 2005 Aug; 123(5):054907. PubMed ID: 16108693
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrodynamics beyond Navier-Stokes: the slip flow model.
    Yudistiawan WP; Ansumali S; Karlin IV
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016705. PubMed ID: 18764079
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulation of hard-disk flow in microchannels.
    Shen G; Ge W
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jan; 81(1 Pt 1):011201. PubMed ID: 20365358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetic model for sheared granular flows in the high Knudsen number limit.
    Kumaran V
    Phys Rev Lett; 2005 Sep; 95(10):108001. PubMed ID: 16196968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heat transfer and fluid flow in microchannels and nanochannels at high Knudsen number using thermal lattice-Boltzmann method.
    Ghazanfarian J; Abbassi A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026307. PubMed ID: 20866905
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transport coefficients for granular media from molecular dynamics simulations.
    Bizon C; Shattuck MD; Swift JB; Swinney HL
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 Oct; 60(4 Pt B):4340-51. PubMed ID: 11970288
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Slip velocity and Knudsen layer in the lattice Boltzmann method for microscale flows.
    Kim SH; Pitsch H; Boyd ID
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Feb; 77(2 Pt 2):026704. PubMed ID: 18352145
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homogeneous states in driven granular mixtures: Enskog kinetic theory versus molecular dynamics simulations.
    Khalil N; Garzó V
    J Chem Phys; 2014 Apr; 140(16):164901. PubMed ID: 24784304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Shear flow of dense granular materials near smooth walls. II. Block formation and suppression of slip by rolling friction.
    Shojaaee Z; Brendel L; Török J; Wolf DE
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jul; 86(1 Pt 1):011302. PubMed ID: 23005406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.