These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19792124)

  • 1. Enhanced crystal stability in a binary mixture of charged colloidal spheres.
    Wette P; Schöpe HJ; Palberg T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 1):021407. PubMed ID: 19792124
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phase behaviour of deionized binary mixtures of charged colloidal spheres.
    Lorenz NJ; Schöpe HJ; Reiber H; Palberg T; Wette P; Klassen I; Holland-Moritz D; Herlach D; Okubo T
    J Phys Condens Matter; 2009 Nov; 21(46):464116. PubMed ID: 21715880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phase behavior of a de-ionized binary mixture of charged spheres in the presence of gravity.
    Lorenz NJ; Schöpe HJ; Palberg T
    J Chem Phys; 2009 Oct; 131(13):134501. PubMed ID: 19814560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microstructural diversity, nucleation paths, and phase behavior in binary mixtures of charged colloidal spheres.
    Lorenz N; Gupta I; Palberg T
    J Chem Phys; 2023 Mar; 158(11):114902. PubMed ID: 36948792
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Melting and freezing lines for a mixture of charged colloidal spheres with spindle-type phase diagram.
    Lorenz NJ; Palberg T
    J Chem Phys; 2010 Sep; 133(10):104501. PubMed ID: 20849172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallization in charged two-component suspensions.
    Wette P; Schöpe HJ; Palberg T
    J Chem Phys; 2005 Apr; 122(14):144901. PubMed ID: 15847559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering.
    Hornfeck W; Menke D; Forthaus M; Subatzus S; Franke M; Schöpe HJ; Palberg T; Perlich J; Herlach D
    J Chem Phys; 2014 Dec; 141(21):214906. PubMed ID: 25481168
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Equilibrium fluid-crystal interfacial free energy of bcc-crystallizing aqueous suspensions of polydisperse charged spheres.
    Palberg T; Wette P; Herlach DM
    Phys Rev E; 2016 Feb; 93(2):022601. PubMed ID: 26986371
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Crystallization kinetics of colloidal binary mixtures with depletion attraction.
    Kozina A; Díaz-Leyva P; Palberg T; Bartsch E
    Soft Matter; 2014 Dec; 10(47):9523-33. PubMed ID: 25354340
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of a colloidal interstitial solid with tunable sublattice doping.
    Filion L; Hermes M; Ni R; Vermolen EC; Kuijk A; Christova CG; Stiefelhagen JC; Vissers T; van Blaaderen A; Dijkstra M
    Phys Rev Lett; 2011 Oct; 107(16):168302. PubMed ID: 22107433
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microscopic investigations of homogeneous nucleation in charged sphere suspensions.
    Wette P; Schöpe HJ; Palberg T
    J Chem Phys; 2005 Nov; 123(17):174902. PubMed ID: 16375564
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular simulation of homogeneous crystal nucleation of AB
    Bommineni PK; Punnathanam SN
    J Chem Phys; 2017 Aug; 147(6):064504. PubMed ID: 28810784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Packing of crystalline structures of binary hard spheres: an analytical approach and application to amorphization.
    Brouwers HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Oct; 76(4 Pt 1):041304. PubMed ID: 17994978
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colloidal crystals of core-shell type spheres with poly(styrene) core and poly(ethylene oxide) shell.
    Okamoto J; Kimura H; Tsuchida A; Okubo T; Ito K
    Colloids Surf B Biointerfaces; 2007 Apr; 56(1-2):231-5. PubMed ID: 17254758
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Kinetics of crystallization in hard-sphere colloidal suspensions.
    Dixit NM; Zukoski CF
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Oct; 64(4 Pt 1):041604. PubMed ID: 11690037
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy barriers for homogeneous crystal nucleation in a eutectic system of binary hard spheres.
    Ganagalla SR; Punnathanam SN
    J Chem Phys; 2013 May; 138(17):174503. PubMed ID: 23656140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nucleation kinetics in deionized charged colloidal model systems: a quantitative study by means of classical nucleation theory.
    Wette P; Schöpe HJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 May; 75(5 Pt 1):051405. PubMed ID: 17677063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polymorph selection during the crystallization of Yukawa systems.
    Desgranges C; Delhommelle J
    J Chem Phys; 2007 Feb; 126(5):054501. PubMed ID: 17302479
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Solidification of a colloidal hard sphere like model system approaching and crossing the glass transition.
    Franke M; Golde S; Schöpe HJ
    Soft Matter; 2014 Aug; 10(29):5380-9. PubMed ID: 24926966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallization kinetics of hard spheres in microgravity in the coexistence regime: interactions between growing crystallites.
    Cheng Z; Chaikin PM; Zhu J; Russel WB; Meyer WV
    Phys Rev Lett; 2002 Jan; 88(1):015501. PubMed ID: 11800960
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.