These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 19792220)

  • 1. Determining the heterogeneity in time of the dynamics within a slowly relaxing region of a supercooled liquid: Role of sharp relaxation events.
    Alarcón LM; Frechero MA; Montani RA; Appignanesi GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026127. PubMed ID: 19792220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Space and time dynamical heterogeneity in glassy relaxation. The role of democratic clusters.
    Appignanesi GA; Rodriguez Fris JA
    J Phys Condens Matter; 2009 May; 21(20):203103. PubMed ID: 21825509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Connections between structural jamming, local metabasin features, and relaxation dynamics in a supercooled glassy liquid.
    Frechero MA; Alarcón LM; Schulz EP; Appignanesi GA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Jan; 75(1 Pt 1):011502. PubMed ID: 17358155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Metabasin dynamics and local structure in supercooled water.
    Rodríguez Fris JA; Appignanesi GA; La Nave E; Sciortino F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Apr; 75(4 Pt 1):041501. PubMed ID: 17500896
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time evolution of dynamic propensity in a model glass former: the interplay between structure and dynamics.
    Rodriguez Fris JA; Alarcón LM; Appignanesi GA
    J Chem Phys; 2009 Jan; 130(2):024108. PubMed ID: 19154020
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal hierarchy of relaxation events, dynamical heterogeneities, and structural reorganization in a supercooled liquid.
    Candelier R; Widmer-Cooper A; Kummerfeld JK; Dauchot O; Biroli G; Harrowell P; Reichman DR
    Phys Rev Lett; 2010 Sep; 105(13):135702. PubMed ID: 21230788
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Correlations between short- and long-time relaxation in colloidal supercooled liquids and glasses.
    Mishra CK; Ma X; Habdas P; Aptowicz KB; Yodh AG
    Phys Rev E; 2019 Aug; 100(2-1):020603. PubMed ID: 31574722
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Democratic particle motion for metabasin transitions in simple glass formers.
    Appignanesi GA; Rodríguez Fris JA; Montani RA; Kob W
    Phys Rev Lett; 2006 Feb; 96(5):057801. PubMed ID: 16486989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temperature dependence of spatially heterogeneous dynamics in a model of viscous silica.
    Vogel M; Glotzer SC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Dec; 70(6 Pt 1):061504. PubMed ID: 15697371
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Persistent Local Structural Defectiveness as an Early Time Predictor of Intermittent Glassy Relaxation Events in Supercooled Water.
    Verde AR; Alarcón LM; Accordino SR; Appignanesi GA
    J Phys Chem B; 2023 Apr; 127(15):3516-3523. PubMed ID: 37022010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Examination of dynamic facilitation in molecular dynamics simulations of glass-forming liquids.
    Bergroth MN; Vogel M; Glotzer SC
    J Phys Chem B; 2005 Apr; 109(14):6748-53. PubMed ID: 16851759
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Particle rearrangements during transitions between local minima of the potential energy landscape of a binary Lennard-Jones liquid.
    Vogel M; Doliwa B; Heuer A; Glotzer SC
    J Chem Phys; 2004 Mar; 120(9):4404-14. PubMed ID: 15268609
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Experimental verification of rapid, sporadic particle motions by direct imaging of glassy colloidal systems.
    Fris JA; Appignanesi GA; Weeks ER
    Phys Rev Lett; 2011 Aug; 107(6):065704. PubMed ID: 21902343
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vapor Condensed and Supercooled Glassy Nanoclusters.
    Qi W; Bowles RK
    ACS Nano; 2016 Mar; 10(3):3416-23. PubMed ID: 26866858
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Connecting relaxation time to a dynamical length scale in athermal active glass formers.
    Ghoshal D; Joy A
    Phys Rev E; 2020 Dec; 102(6-1):062605. PubMed ID: 33465951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A molecular dynamics simulations study on the relations between dynamical heterogeneity, structural relaxation, and self-diffusion in viscous liquids.
    Henritzi P; Bormuth A; Klameth F; Vogel M
    J Chem Phys; 2015 Oct; 143(16):164502. PubMed ID: 26520522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ideal probe single-molecule experiments reveal the intrinsic dynamic heterogeneity of a supercooled liquid.
    Paeng K; Park H; Hoang DT; Kaufman LJ
    Proc Natl Acad Sci U S A; 2015 Apr; 112(16):4952-7. PubMed ID: 25825739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamics at the liquid-vapor interface of a supercooled organic glass former.
    Sikorski M; Gutt C; Chushkin Y; Lippmann M; Franz H
    Phys Rev Lett; 2010 Nov; 105(21):215701. PubMed ID: 21231323
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct evidence of heterogeneous mechanical relaxation in supercooled liquids.
    Furukawa A; Tanaka H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 1):061503. PubMed ID: 22304093
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Correlation of fragility of supercooled liquids with elastic properties of glasses.
    Novikov VN; Ding Y; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 1):061501. PubMed ID: 16089737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.