BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

372 related articles for article (PubMed ID: 19792232)

  • 1. Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium.
    Míguez DG; McGraw P; Muñuzuri AP; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026208. PubMed ID: 19792232
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Harmonic resonant excitation of flow-distributed oscillation waves and Turing patterns driven at a growing boundary.
    McGraw PN; Menzinger M; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026209. PubMed ID: 19792233
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pattern formation by boundary forcing in convectively unstable, oscillatory media with and without differential transport.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026210. PubMed ID: 16196687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.
    Dolnik M; Bánsági T; Ansari S; Valent I; Epstein IR
    Phys Chem Chem Phys; 2011 Jul; 13(27):12578-83. PubMed ID: 21666931
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with square spatial periodic forcing.
    Feldman D; Nagao R; Bánsági T; Epstein IR; Dolnik M
    Phys Chem Chem Phys; 2012 May; 14(18):6577-83. PubMed ID: 22456449
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spatial periodic forcing of Turing structures.
    Dolnik M; Berenstein I; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2001 Dec; 87(23):238301. PubMed ID: 11736479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Waving patterns: a general transition from stationary to moving forced Turing structures.
    Berenstein I; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Sep; 74(3 Pt 2):036202. PubMed ID: 17025724
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Blocking and transmission of traveling flow-distributed-oscillation waves in an absolutely unstable flowing medium.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026208. PubMed ID: 23005846
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonant suppression of Turing patterns by periodic illumination.
    Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026101. PubMed ID: 11308536
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling-stripe forcing generates hexagonal patterns.
    Míguez DG; Nicola EM; Muñuzuri AP; Casademunt J; Sagués F; Kramer L
    Phys Rev Lett; 2004 Jul; 93(4):048303. PubMed ID: 15323800
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamic mechanism of photochemical induction of turing superlattices in the chlorine dioxide-iodine-malonic acid reaction-diffusion system.
    Berenstein I; Yang L; Dolnik M; Zhabotinsky AM; Epstein IR
    J Phys Chem A; 2005 Jun; 109(24):5382-7. PubMed ID: 16839063
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates.
    Satnoianu RA; Menzinger M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):113-9. PubMed ID: 11088442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Noise-reversed stability of Turing patterns versus Hopf oscillations near codimension-two conditions.
    Alonso S; Sagués F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Sep; 80(3 Pt 2):035203. PubMed ID: 19905167
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dynamics of Turing patterns under spatiotemporal forcing.
    Rüdiger S; Míguez DG; Muñuzuri AP; Sagués F; Casademunt J
    Phys Rev Lett; 2003 Mar; 90(12):128301. PubMed ID: 12688908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Turing patterns, spatial bistability, and front interactions in the [ClO2, I2, I-, CH2(COOH)2] reaction.
    Strier DE; De Kepper P; Boissonade J
    J Phys Chem A; 2005 Feb; 109(7):1357-63. PubMed ID: 16833452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Forcing of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with strong visible light.
    Nagao R; Epstein IR; Dolnik M
    J Phys Chem A; 2013 Sep; 117(38):9120-6. PubMed ID: 23991763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Turing instability controlled by spatiotemporal imposed dynamics.
    Míguez DG; Pérez-Villar V; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Jun; 71(6 Pt 2):066217. PubMed ID: 16089859
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental evidence of localized oscillations in the photosensitive chlorine dioxide-iodine-malonic acid reaction.
    Míguez DG; Alonso S; Muñuzuri AP; Sagués F
    Phys Rev Lett; 2006 Oct; 97(17):178301. PubMed ID: 17155511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.