These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 19792233)

  • 1. Harmonic resonant excitation of flow-distributed oscillation waves and Turing patterns driven at a growing boundary.
    McGraw PN; Menzinger M; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026209. PubMed ID: 19792233
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection of flow-distributed oscillation and Turing patterns by boundary forcing in a linearly growing, oscillating medium.
    Míguez DG; McGraw P; Muñuzuri AP; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026208. PubMed ID: 19792232
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blocking and transmission of traveling flow-distributed-oscillation waves in an absolutely unstable flowing medium.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 2):026208. PubMed ID: 23005846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transverse instabilities in chemical Turing patterns of stripes.
    Peña B; Pérez-García C; Sanz-Anchelergues A; Míguez DG; Muñuzuri AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 Nov; 68(5 Pt 2):056206. PubMed ID: 14682870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flow-distributed oscillation, flow-velocity modulation, and resonance.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):027202. PubMed ID: 16196756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Microscale capillary wave turbulence excited by high frequency vibration.
    Blamey J; Yeo LY; Friend JR
    Langmuir; 2013 Mar; 29(11):3835-45. PubMed ID: 23428156
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pattern formation by boundary forcing in convectively unstable, oscillatory media with and without differential transport.
    McGraw PN; Menzinger M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Aug; 72(2 Pt 2):026210. PubMed ID: 16196687
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Parametrically excited surface waves: two-frequency forcing, normal form symmetries, and pattern selection.
    Silber M; Skeldon AC
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 1999 May; 59(5 Pt B):5446-56. PubMed ID: 11969524
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Principal bifurcations and symmetries in the emergence of reaction-diffusion-advection patterns on finite domains.
    Yochelis A; Sheintuch M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Nov; 80(5 Pt 2):056201. PubMed ID: 20365054
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Resonance tongues and patterns in periodically forced reaction-diffusion systems.
    Lin AL; Hagberg A; Meron E; Swinney HL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 2):066217. PubMed ID: 15244718
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinguishing similar patterns with different underlying instabilities: effect of advection on systems with Hopf, Turing-Hopf, and wave instabilities.
    Berenstein I
    Chaos; 2012 Dec; 22(4):043109. PubMed ID: 23278044
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Resonant suppression of Turing patterns by periodic illumination.
    Dolnik M; Zhabotinsky AM; Epstein IR
    Phys Rev E Stat Nonlin Soft Matter Phys; 2001 Feb; 63(2 Pt 2):026101. PubMed ID: 11308536
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pattern formation in a reaction-diffusion-advection system with wave instability.
    Berenstein I
    Chaos; 2012 Jun; 22(2):023112. PubMed ID: 22757519
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Locking of Turing patterns in the chlorine dioxide-iodine-malonic acid reaction with one-dimensional spatial periodic forcing.
    Dolnik M; Bánsági T; Ansari S; Valent I; Epstein IR
    Phys Chem Chem Phys; 2011 Jul; 13(27):12578-83. PubMed ID: 21666931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Non-turing stationary patterns in flow-distributed oscillators with general diffusion and flow rates.
    Satnoianu RA; Menzinger M
    Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt A):113-9. PubMed ID: 11088442
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Forced patterns near a Turing-Hopf bifurcation.
    Topaz CM; Catllá AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Feb; 81(2 Pt 2):026213. PubMed ID: 20365644
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Convective instability and boundary driven oscillations in a reaction-diffusion-advection model.
    Vidal-Henriquez E; Zykov V; Bodenschatz E; Gholami A
    Chaos; 2017 Oct; 27(10):103110. PubMed ID: 29092427
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable squares and other oscillatory turing patterns in a reaction-diffusion model.
    Yang L; Zhabotinsky AM; Epstein IR
    Phys Rev Lett; 2004 May; 92(19):198303. PubMed ID: 15169455
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Widening the criteria for emergence of Turing patterns.
    Kuznetsov M; Polezhaev A
    Chaos; 2020 Mar; 30(3):033106. PubMed ID: 32237770
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pattern formation in 4:1 resonance of the periodically forced CO oxidation on Pt(110).
    Kaira P; Bodega PS; Punckt C; Rotermund HH; Krefting D
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Apr; 77(4 Pt 2):046106. PubMed ID: 18517689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.