These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19792249)

  • 1. Deformation and breakup of high-viscosity droplets with symmetric microfluidic cross flows.
    Cubaud T
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026307. PubMed ID: 19792249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deformation and breakup of micro- and nanoparticle stabilized droplets in microfluidic extensional flows.
    Mulligan MK; Rothstein JP
    Langmuir; 2011 Aug; 27(16):9760-8. PubMed ID: 21732665
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modeling of droplet breakup in a microfluidic T-shaped junction with a phase-field model.
    De Menech M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2006 Mar; 73(3 Pt 1):031505. PubMed ID: 16605530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Motion and deformation of a droplet in a microfluidic cross-junction.
    Boruah N; Dimitrakopoulos P
    J Colloid Interface Sci; 2015 Sep; 453():216-225. PubMed ID: 25985426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of the breakup process of viscous droplets by an external electric field inside a microfluidic device.
    Li Y; Jain M; Ma Y; Nandakumar K
    Soft Matter; 2015 May; 11(19):3884-99. PubMed ID: 25864524
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of Microdroplet Breakup Regime in Asymmetric T-Junction Microchannels.
    Cheng WL; Sadr R; Dai J; Han A
    Biomed Microdevices; 2018 Aug; 20(3):72. PubMed ID: 30105562
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Insights into the Microscale Coalescence Behavior of Surfactant-Stabilized Droplets Using a Microfluidic Hydrodynamic Trap.
    Narayan S; Makhnenko I; Moravec DB; Hauser BG; Dallas AJ; Dutcher CS
    Langmuir; 2020 Aug; 36(33):9827-9842. PubMed ID: 32693603
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lattice Boltzmann simulations of droplet formation in confined channels with thermocapillary flows.
    Gupta A; Sbragaglia M; Belardinelli D; Sugiyama K
    Phys Rev E; 2016 Dec; 94(6-1):063302. PubMed ID: 28085339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Deformation and breakup of viscoelastic droplets in confined shear flow.
    Gupta A; Sbragaglia M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Aug; 90(2):023305. PubMed ID: 25215849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly productive droplet formation by anisotropic elongation of a thread flow in a microchannel.
    Saeki D; Sugiura S; Kanamori T; Sato S; Mukataka S; Ichikawa S
    Langmuir; 2008 Dec; 24(23):13809-13. PubMed ID: 18986185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Migration of a droplet in a cylindrical tube in the creeping flow regime.
    Nath B; Biswas G; Dalal A; Sahu KC
    Phys Rev E; 2017 Mar; 95(3-1):033110. PubMed ID: 28415194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Motion of Viscous Droplets in Rough Confinement: Paradoxical Lubrication.
    Keiser L; Keiser A; L'Estimé M; Bico J; Reyssat É
    Phys Rev Lett; 2019 Feb; 122(7):074501. PubMed ID: 30848625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities.
    Jakiela S; Makulska S; Korczyk PM; Garstecki P
    Lab Chip; 2011 Nov; 11(21):3603-8. PubMed ID: 21909516
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Experimental studies on droplet characteristics in a microfluidic flow focusing droplet generator: effect of continuous phase on droplet encapsulation.
    Srikanth S; Raut S; Dubey SK; Ishii I; Javed A; Goel S
    Eur Phys J E Soft Matter; 2021 Aug; 44(8):108. PubMed ID: 34455490
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deformation and breakup of a liquid droplet past a solid circular cylinder: a lattice Boltzmann study.
    Li Q; Chai Z; Shi B; Liang H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043015. PubMed ID: 25375601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A soft microchannel decreases polydispersity of droplet generation.
    Pang Y; Kim H; Liu Z; Stone HA
    Lab Chip; 2014 Oct; 14(20):4029-34. PubMed ID: 25144377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Two-phase microfluidic droplet flows of ionic liquids for the synthesis of gold and silver nanoparticles.
    Lazarus LL; Riche CT; Marin BC; Gupta M; Malmstadt N; Brutchey RL
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3077-83. PubMed ID: 22524284
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of the fluid injection configuration on droplet size in a microfluidic T junction.
    Carrier O; Funfschilling D; Li HZ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jan; 89(1):013003. PubMed ID: 24580316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of acoustic droplet formation in a microfluidic flow-focusing device.
    Cheung YN; Qiu H
    Phys Rev E Stat Nonlin Soft Matter Phys; 2011 Dec; 84(6 Pt 2):066310. PubMed ID: 22304193
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.