These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 19792249)

  • 21. Passive droplet sorting using viscoelastic flow focusing.
    Hatch AC; Patel A; Beer NR; Lee AP
    Lab Chip; 2013 Apr; 13(7):1308-15. PubMed ID: 23380996
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of the viscosity and charge mobility on the shape deformation of critically charged droplets.
    Giglio E; Rangama J; Guillous S; Le Cornu T
    Phys Rev E; 2020 Jan; 101(1-1):013105. PubMed ID: 32069655
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Deformation and breakup of compound droplets in airflow.
    Xu Z; Zhang Y; Wang T; Che Z
    J Colloid Interface Sci; 2024 Jan; 653(Pt A):517-527. PubMed ID: 37729759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Coexistence of different droplet generating instabilities: new breakup regimes of a liquid filament.
    Hein M; Fleury JB; Seemann R
    Soft Matter; 2015 Jul; 11(26):5246-52. PubMed ID: 26053325
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The effect of geometrical confinement on coalescence efficiency of droplet pairs in shear flow.
    De Bruyn P; Cardinaels R; Moldenaers P
    J Colloid Interface Sci; 2013 Nov; 409():183-92. PubMed ID: 23988082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Confinement effect on electrically induced dynamics of a droplet in shear flow.
    Santra S; Mandal S; Chakraborty S
    Phys Rev E; 2019 Sep; 100(3-1):033101. PubMed ID: 31640051
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modeling breakup and relaxation of Newtonian droplets using the advected phase-field approach.
    Beaucourt J; Biben T; Leyrat A; Verdier C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Feb; 75(2 Pt 1):021405. PubMed ID: 17358340
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of confinement on droplet coalescence in shear flow.
    Chen D; Cardinaels R; Moldenaers P
    Langmuir; 2009 Nov; 25(22):12885-93. PubMed ID: 19795816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic Generation of High-Viscosity Droplets by Surface-Controlled Breakup of Segment Flow.
    Chen H; Man J; Li Z; Li J
    ACS Appl Mater Interfaces; 2017 Jun; 9(25):21059-21064. PubMed ID: 28589716
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Droplet size distributions in turbulent emulsions: breakup criteria and surfactant effects from direct numerical simulations.
    Skartlien R; Sollum E; Schumann H
    J Chem Phys; 2013 Nov; 139(17):174901. PubMed ID: 24206328
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Microfluidic Valves for Selective on-Chip Droplet Splitting at Multiple Sites.
    Agnihotri SN; Raveshi MR; Bhardwaj R; Neild A
    Langmuir; 2020 Feb; 36(5):1138-1146. PubMed ID: 31968938
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Interfacial Tension Measurements in Microfluidic Quasi-Static Extensional Flows.
    Lee D; Shen AQ
    Micromachines (Basel); 2021 Mar; 12(3):. PubMed ID: 33800831
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature dependence of droplet breakup in 8CB and 5CB liquid crystals.
    Porter D; Savage JR; Cohen I; Spicer P; Caggioni M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Apr; 85(4 Pt 1):041701. PubMed ID: 22680486
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A Numerical Investigation on Droplet Bag Breakup Behavior of Polymer Solution.
    Chu G; Qian L; Zhong X; Zhu C; Chen Z
    Polymers (Basel); 2020 Sep; 12(10):. PubMed ID: 32977399
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Breakup dynamics and dripping-to-jetting transition in a Newtonian/shear-thinning multiphase microsystem.
    Ren Y; Liu Z; Shum HC
    Lab Chip; 2015 Jan; 15(1):121-34. PubMed ID: 25316203
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Experimental investigation of droplet acceleration and collision in the gas phase in a microchannel.
    Takahashi K; Sugii Y; Mawatari K; Kitamori T
    Lab Chip; 2011 Sep; 11(18):3098-105. PubMed ID: 21826292
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of confinement on droplet breakup in sheared emulsions.
    Vananroye A; Van Puyvelde P; Moldenaers P
    Langmuir; 2006 Apr; 22(9):3972-4. PubMed ID: 16618134
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The dynamic effects of surfactants on droplet formation in coaxial microfluidic devices.
    Xu JH; Dong PF; Zhao H; Tostado CP; Luo GS
    Langmuir; 2012 Jun; 28(25):9250-8. PubMed ID: 22650368
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Production of W/O/W (water-in-oil-in-water) multiple emulsions: droplet breakup and release of water.
    Schuch A; Deiters P; Henne J; Köhler K; Schuchmann HP
    J Colloid Interface Sci; 2013 Jul; 402():157-64. PubMed ID: 23643254
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.