These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 19792252)

  • 1. Impact of inlet channel geometry on microfluidic drop formation.
    Abate AR; Poitzsch A; Hwang Y; Lee J; Czerwinska J; Weitz DA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026310. PubMed ID: 19792252
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow focusing geometry generates droplets through a plug and squeeze mechanism.
    Romero PA; Abate AR
    Lab Chip; 2012 Dec; 12(24):5130-2. PubMed ID: 23117576
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental validation of plugging during drop formation in a T-junction.
    Abate AR; Mary P; van Steijn V; Weitz DA
    Lab Chip; 2012 Apr; 12(8):1516-21. PubMed ID: 22402628
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Droplet formation in microfluidic T-junction generators operating in the transitional regime. II. Modeling.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016323. PubMed ID: 22400673
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Motion of deformable drops through granular media and other confined geometries.
    Davis RH; Zinchenko AZ
    J Colloid Interface Sci; 2009 Jun; 334(2):113-23. PubMed ID: 19406427
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions.
    Christopher GF; Noharuddin NN; Taylor JA; Anna SL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Sep; 78(3 Pt 2):036317. PubMed ID: 18851153
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Droplet formation in microfluidic T-junction generators operating in the transitional regime. I. Experimental observations.
    Glawdel T; Elbuken C; Ren CL
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Jan; 85(1 Pt 2):016322. PubMed ID: 22400672
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Formation of droplets and bubbles in a microfluidic T-junction-scaling and mechanism of break-up.
    Garstecki P; Fuerstman MJ; Stone HA; Whitesides GM
    Lab Chip; 2006 Mar; 6(3):437-46. PubMed ID: 16511628
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrodynamic resistance of single confined moving drops in rectangular microchannels.
    Vanapalli SA; Banpurkar AG; van den Ende D; Duits MH; Mugele F
    Lab Chip; 2009 Apr; 9(7):982-90. PubMed ID: 19294311
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microfluidic flow focusing: drop size and scaling in pressure versus flow-rate-driven pumping.
    Ward T; Faivre M; Abkarian M; Stone HA
    Electrophoresis; 2005 Oct; 26(19):3716-24. PubMed ID: 16196106
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enzyme kinetic measurements using a droplet-based microfluidic system with a concentration gradient.
    Bui MP; Li CA; Han KN; Choo J; Lee EK; Seong GH
    Anal Chem; 2011 Mar; 83(5):1603-8. PubMed ID: 21280615
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfluidic generation of aqueous two-phase system (ATPS) droplets by controlled pulsating inlet pressures.
    Moon BU; Jones SG; Hwang DK; Tsai SS
    Lab Chip; 2015 Jun; 15(11):2437-44. PubMed ID: 25906146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore-scale effects during the transition from capillary- to viscosity-dominated flow dynamics within microfluidic porous-like domains.
    Yiotis A; Karadimitriou NK; Zarikos I; Steeb H
    Sci Rep; 2021 Feb; 11(1):3891. PubMed ID: 33594146
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlled formation of double-emulsion drops in sudden expansion channels.
    Kim SH; Kim B
    J Colloid Interface Sci; 2014 Feb; 415():26-31. PubMed ID: 24267326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction and control of drop formation modes in microfluidic generation of double emulsions by single-step emulsification.
    Nabavi SA; Vladisavljević GT; Bandulasena MV; Arjmandi-Tash O; Manović V
    J Colloid Interface Sci; 2017 Nov; 505():315-324. PubMed ID: 28601740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shear force induced monodisperse droplet formation in a microfluidic device by controlling wetting properties.
    Xu JH; Luo GS; Li SW; Chen GG
    Lab Chip; 2006 Jan; 6(1):131-6. PubMed ID: 16372080
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stability of parallel flows in a microchannel after a T junction.
    Guillot P; Colin A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Dec; 72(6 Pt 2):066301. PubMed ID: 16486053
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct measurement of the differential pressure during drop formation in a co-flow microfluidic device.
    Xu K; Tostado CP; Xu JH; Lu YC; Luo GS
    Lab Chip; 2014 Apr; 14(7):1357-66. PubMed ID: 24554196
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The drop size in membrane emulsification determined from the balance of capillary and hydrodynamic forces.
    Christov NC; Danov KD; Danova DK; Kralchevsky PA
    Langmuir; 2008 Feb; 24(4):1397-410. PubMed ID: 17963414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Drop formation in non-planar microfluidic devices.
    Rotem A; Abate AR; Utada AS; Van Steijn V; Weitz DA
    Lab Chip; 2012 Nov; 12(21):4263-8. PubMed ID: 22864475
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.