These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. Comparison of inlet geometry in microfluidic cell affinity chromatography. Li P; Tian Y; Pappas D Anal Chem; 2011 Feb; 83(3):774-81. PubMed ID: 21207967 [TBL] [Abstract][Full Text] [Related]
26. Lattice Boltzmann simulations of bubble formation in a microfluidic T-junction. Amaya-Bower L; Lee T Philos Trans A Math Phys Eng Sci; 2011 Jun; 369(1945):2405-13. PubMed ID: 21576154 [TBL] [Abstract][Full Text] [Related]
27. Manufacturing monodisperse chitosan microparticles containing ampicillin using a microchannel chip. Yang CH; Huang KS; Chang JY Biomed Microdevices; 2007 Apr; 9(2):253-9. PubMed ID: 17180710 [TBL] [Abstract][Full Text] [Related]
28. Finite reservoir effect on capillary flow of microbead suspension in rectangular microchannels. Waghmare PR; Mitra SK J Colloid Interface Sci; 2010 Nov; 351(2):561-9. PubMed ID: 20813377 [TBL] [Abstract][Full Text] [Related]
29. Speed of flow of individual droplets in microfluidic channels as a function of the capillary number, volume of droplets and contrast of viscosities. Jakiela S; Makulska S; Korczyk PM; Garstecki P Lab Chip; 2011 Nov; 11(21):3603-8. PubMed ID: 21909516 [TBL] [Abstract][Full Text] [Related]
30. Stability of a jet in confined pressure-driven biphasic flows at low Reynolds number in various geometries. Guillot P; Colin A; Ajdari A Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Jul; 78(1 Pt 2):016307. PubMed ID: 18764050 [TBL] [Abstract][Full Text] [Related]
31. A study of the production and reversible stability of EGaIn liquid metal microspheres using flow focusing. Thelen J; Dickey MD; Ward T Lab Chip; 2012 Oct; 12(20):3961-7. PubMed ID: 22895484 [TBL] [Abstract][Full Text] [Related]
36. Capillary flow enhancement in rectangular polymer microchannels with a deformable wall. Anoop R; Sen AK Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):013024. PubMed ID: 26274286 [TBL] [Abstract][Full Text] [Related]
37. Droplet breakup in an asymmetric microfluidic T junction. Bedram A; Moosavi A Eur Phys J E Soft Matter; 2011 Aug; 34(8):78. PubMed ID: 21822814 [TBL] [Abstract][Full Text] [Related]
38. Effect of confinement on the deformation of microfluidic drops. Ulloa C; Ahumada A; Cordero ML Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):033004. PubMed ID: 24730934 [TBL] [Abstract][Full Text] [Related]
39. Cooperative breakups induced by drop-to-drop interactions in one-dimensional flows of drops against micro-obstacles. Schmit A; Salkin L; Courbin L; Panizza P Soft Matter; 2015 Mar; 11(12):2454-60. PubMed ID: 25668310 [TBL] [Abstract][Full Text] [Related]
40. Coalescing drops in microfluidic parking networks: A multifunctional platform for drop-based microfluidics. Bithi SS; Wang WS; Sun M; Blawzdziewicz J; Vanapalli SA Biomicrofluidics; 2014 May; 8(3):034118. PubMed ID: 25379078 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]