These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
319 related articles for article (PubMed ID: 19792266)
1. Rogue waves and rational solutions of the nonlinear Schrödinger equation. Akhmediev N; Ankiewicz A; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Aug; 80(2 Pt 2):026601. PubMed ID: 19792266 [TBL] [Abstract][Full Text] [Related]
2. Rogue waves and rational solutions of the Hirota equation. Ankiewicz A; Soto-Crespo JM; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 2):046602. PubMed ID: 20481848 [TBL] [Abstract][Full Text] [Related]
3. Few-cycle optical rogue waves: complex modified Korteweg-de Vries equation. He J; Wang L; Li L; Porsezian K; Erdélyi R Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jun; 89(6):062917. PubMed ID: 25019861 [TBL] [Abstract][Full Text] [Related]
4. Breather and rogue wave solutions of a generalized nonlinear Schrödinger equation. Wang LH; Porsezian K; He JS Phys Rev E Stat Nonlin Soft Matter Phys; 2013 May; 87(5):053202. PubMed ID: 23767650 [TBL] [Abstract][Full Text] [Related]
5. Breather-to-soliton transitions, nonlinear wave interactions, and modulational instability in a higher-order generalized nonlinear Schrödinger equation. Wang L; Zhang JH; Wang ZQ; Liu C; Li M; Qi FH; Guo R Phys Rev E; 2016 Jan; 93(1):012214. PubMed ID: 26871080 [TBL] [Abstract][Full Text] [Related]
6. Rogue wave modes for a derivative nonlinear Schrödinger model. Chan HN; Chow KW; Kedziora DJ; Grimshaw RH; Ding E Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Mar; 89(3):032914. PubMed ID: 24730920 [TBL] [Abstract][Full Text] [Related]
7. Rogue periodic waves of the focusing nonlinear Schrödinger equation. Chen J; Pelinovsky DE Proc Math Phys Eng Sci; 2018 Feb; 474(2210):20170814. PubMed ID: 29507521 [No Abstract] [Full Text] [Related]
8. Generalized perturbation (n, M)-fold Darboux transformations and multi-rogue-wave structures for the modified self-steepening nonlinear Schrödinger equation. Wen XY; Yang Y; Yan Z Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jul; 92(1):012917. PubMed ID: 26274257 [TBL] [Abstract][Full Text] [Related]
9. Super chirped rogue waves in optical fibers. Chen S; Zhou Y; Bu L; Baronio F; Soto-Crespo JM; Mihalache D Opt Express; 2019 Apr; 27(8):11370-11384. PubMed ID: 31052982 [TBL] [Abstract][Full Text] [Related]
10. Observation of a hierarchy of up to fifth-order rogue waves in a water tank. Chabchoub A; Hoffmann N; Onorato M; Slunyaev A; Sergeeva A; Pelinovsky E; Akhmediev N Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Nov; 86(5 Pt 2):056601. PubMed ID: 23214897 [TBL] [Abstract][Full Text] [Related]
11. Influence of optical activity on rogue waves propagating in chiral optical fibers. Temgoua DD; Kofane TC Phys Rev E; 2016 Jun; 93(6):062223. PubMed ID: 27415269 [TBL] [Abstract][Full Text] [Related]
12. Rogue wave solutions for the infinite integrable nonlinear Schrödinger equation hierarchy. Ankiewicz A; Akhmediev N Phys Rev E; 2017 Jul; 96(1-1):012219. PubMed ID: 29347075 [TBL] [Abstract][Full Text] [Related]
13. Optical rogue waves for the inhomogeneous generalized nonlinear Schrödinger equation. Loomba S; Kaur H Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Dec; 88(6):062903. PubMed ID: 24483527 [TBL] [Abstract][Full Text] [Related]
14. Rogue waves in the two dimensional nonlocal nonlinear Schrödinger equation and nonlocal Klein-Gordon equation. Liu W; Zhang J; Li X PLoS One; 2018; 13(2):e0192281. PubMed ID: 29432495 [TBL] [Abstract][Full Text] [Related]
15. Rogue waves for the fourth-order nonlinear Schrödinger equation on the periodic background. Zhang HQ; Chen F Chaos; 2021 Feb; 31(2):023129. PubMed ID: 33653045 [TBL] [Abstract][Full Text] [Related]
16. Modulational instability, higher-order localized wave structures, and nonlinear wave interactions for a nonautonomous Lenells-Fokas equation in inhomogeneous fibers. Wang L; Zhu YJ; Qi FH; Li M; Guo R Chaos; 2015 Jun; 25(6):063111. PubMed ID: 26117105 [TBL] [Abstract][Full Text] [Related]
17. Nonparaxial rogue waves in optical Kerr media. Temgoua DD; Kofane TC Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Jun; 91(6):063201. PubMed ID: 26172812 [TBL] [Abstract][Full Text] [Related]
18. Discrete rogue waves of the Ablowitz-Ladik and Hirota equations. Ankiewicz A; Akhmediev N; Soto-Crespo JM Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Aug; 82(2 Pt 2):026602. PubMed ID: 20866932 [TBL] [Abstract][Full Text] [Related]
19. Data-driven rogue waves solutions for the focusing and variable coefficient nonlinear Schrödinger equations via deep learning. Sun J; Dong H; Liu M; Fang Y Chaos; 2024 Jul; 34(7):. PubMed ID: 39028903 [TBL] [Abstract][Full Text] [Related]
20. Controllable parabolic-cylinder optical rogue wave. Zhong WP; Chen L; Belić M; Petrović N Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Oct; 90(4):043201. PubMed ID: 25375612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]