These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 19792460)

  • 1. Transition by intermittency in granular matter: from discontinuous avalanches to continuous flow.
    Fischer R; Gondret P; Rabaud M
    Phys Rev Lett; 2009 Sep; 103(12):128002. PubMed ID: 19792460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avalanche dynamics of granular materials under the slumping regime in a rotating drum as revealed by speckle visibility spectroscopy.
    Yang H; Li R; Kong P; Sun QC; Biggs MJ; Zivkovic V
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Apr; 91(4):042206. PubMed ID: 25974483
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Granular avalanches in a two-dimensional rotating drum with imposed vertical vibration.
    Amon DL; Niculescu T; Utter BC
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jul; 88(1):012203. PubMed ID: 23944450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of correlations in the dynamics of wet granular avalanches.
    Tegzes P; Vicsek T; Schiffer P
    Phys Rev E Stat Nonlin Soft Matter Phys; 2003 May; 67(5 Pt 1):051303. PubMed ID: 12786142
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Active microrheology in active matter systems: Mobility, intermittency, and avalanches.
    Reichhardt C; Reichhardt CJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032313. PubMed ID: 25871116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow of magnetized grains in a rotating drum.
    Lumay G; Vandewalle N
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Oct; 82(4 Pt 1):040301. PubMed ID: 21230228
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamics of dry granular avalanches.
    Fischer R; Gondret P; Perrin B; Rabaud M
    Phys Rev E Stat Nonlin Soft Matter Phys; 2008 Aug; 78(2 Pt 1):021302. PubMed ID: 18850826
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Intermittency between avalanche regimes on grain piles.
    Arran MI; Vriend NM
    Phys Rev E; 2018 Jun; 97(6-1):060901. PubMed ID: 30011504
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hysteretic transition between avalanches and continuous flow in rotated granular systems.
    Linz SJ; Hager W; Hanggi P
    Chaos; 1999 Sep; 9(3):649-653. PubMed ID: 12779860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Triggering avalanches by transverse perturbations in a rotating drum.
    Salinas V; Quiñinao C; González S; Castillo G
    Sci Rep; 2021 Jul; 11(1):13936. PubMed ID: 34230549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine cohesive powders in rotating drums: Transition from rigid-plastic flow to gas-fluidized regime.
    Castellanos A; Valverde JM; Quintanilla MA
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jun; 65(6 Pt 1):061301. PubMed ID: 12188710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Avalanche dynamics in wet granular materials.
    Tegzes P; Vicsek T; Schiffer P
    Phys Rev Lett; 2002 Aug; 89(9):094301. PubMed ID: 12190404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Granular dynamics of a slurry in a rotating drum.
    Liao CC; Hsiau SS; To K
    Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Jul; 82(1 Pt 1):010302. PubMed ID: 20866554
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cohesion on the surface angle and velocity profiles of granular material in a rotating drum.
    Brewster R; Grest GS; Levine AJ
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jan; 79(1 Pt 1):011305. PubMed ID: 19257028
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional and real-scale modeling of flow regimes in dense snow avalanches.
    Li X; Sovilla B; Jiang C; Gaume J
    Landslides; 2021; 18(10):3393-3406. PubMed ID: 34776814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Triggering granular avalanches with ultrasound.
    Léopoldès J; Jia X; Tourin A; Mangeney A
    Phys Rev E; 2020 Oct; 102(4-1):042901. PubMed ID: 33212721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of grain avalanches.
    Rajchenbach J
    Phys Rev Lett; 2002 Jan; 88(1):014301. PubMed ID: 11800950
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The prediction of dynamical quantities in granular avalanches based on graph neural networks.
    Zhang L; Chen J; Zhang H; Huang D
    J Chem Phys; 2023 Dec; 159(21):. PubMed ID: 38038211
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical investigation of the effect of cohesion and ground friction on snow avalanches flow regimes.
    Ligneau C; Sovilla B; Gaume J
    PLoS One; 2022; 17(2):e0264033. PubMed ID: 35167595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dry granular flows down an inclined channel: experimental investigations on the frictional-collisional regime.
    Ancey C
    Phys Rev E Stat Nonlin Soft Matter Phys; 2002 Jan; 65(1 Pt 1):011304. PubMed ID: 11800690
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.