These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 19792565)

  • 1. Plasmon-induced enhancement of quantum interference near metallic nanostructures.
    Yannopapas V; Paspalakis E; Vitanov NV
    Phys Rev Lett; 2009 Aug; 103(6):063602. PubMed ID: 19792565
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on spontaneous emission in complex multilayered plasmonic system via surface integral equation approach with layered medium Green's function.
    Chen YP; Sha WE; Choy WC; Jiang L; Chew WC
    Opt Express; 2012 Aug; 20(18):20210-21. PubMed ID: 23037073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Investigation on the second part of the electromagnetic SERS enhancement and resulting fabrication strategies of anisotropic plasmonic arrays.
    Cialla D; Petschulat J; Hübner U; Schneidewind H; Zeisberger M; Mattheis R; Pertsch T; Schmitt M; Möller R; Popp J
    Chemphyschem; 2010 Jun; 11(9):1918-24. PubMed ID: 20401896
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tunable plasmon resonances in a metallic nanotip-film system.
    Uetsuki K; Verma P; Nordlander P; Kawata S
    Nanoscale; 2012 Sep; 4(19):5931-5. PubMed ID: 22899297
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasmon-enhanced total-internal-reflection fluorescence by momentum-mismatched surface nanostructures.
    Kim K; Oh Y; Ma K; Sim E; Kim D
    Opt Lett; 2009 Dec; 34(24):3905-7. PubMed ID: 20016653
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multifrequency multi-qubit entanglement based on plasmonic hot spots.
    Ren J; Wu T; Zhang X
    Sci Rep; 2015 Sep; 5():13941. PubMed ID: 26350051
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical field enhancement by strong plasmon interaction in graphene nanostructures.
    Thongrattanasiri S; García de Abajo FJ
    Phys Rev Lett; 2013 May; 110(18):187401. PubMed ID: 23683241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tailoring optical metamaterials to tune the atom-surface Casimir-Polder interaction.
    Chan EA; Aljunid SA; Adamo G; Laliotis A; Ducloy M; Wilkowski D
    Sci Adv; 2018 Feb; 4(2):eaao4223. PubMed ID: 29423444
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hot spots in different metal nanostructures for plasmon-enhanced Raman spectroscopy.
    Wei H; Xu H
    Nanoscale; 2013 Nov; 5(22):10794-805. PubMed ID: 24113688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Photo-induced suppression of plasmonic emission enhancement of CdSe/ZnS quantum dots.
    Sadeghi SM; West RG; Nejat A
    Nanotechnology; 2011 Oct; 22(40):405202. PubMed ID: 21896983
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dependence of surface enhanced Raman scattering on the plasmonic template periodicity.
    Mandal P; Ramakrishna SA
    Opt Lett; 2011 Sep; 36(18):3705-7. PubMed ID: 21931439
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of Raman scattering for an atom or molecule near a metal nanocylinder: quantum theory of spontaneous emission and coupling to surface plasmon modes.
    Zuev VS; Frantsesson AV; Gao J; Eden JG
    J Chem Phys; 2005 Jun; 122(21):214726. PubMed ID: 15974781
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cooperative Energy Transfer Controls the Spontaneous Emission Rate Beyond Field Enhancement Limits.
    ElKabbash M; Miele E; Fumani AK; Wolf MS; Bozzola A; Haber E; Shahbazyan TV; Berezovsky J; De Angelis F; Strangi G
    Phys Rev Lett; 2019 May; 122(20):203901. PubMed ID: 31172774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The plasmonic engineering of metal nanoparticles for enhanced fluorescence and Raman scattering.
    Cade NI; Ritman-Meer T; Kwaka K; Richards D
    Nanotechnology; 2009 Jul; 20(28):285201. PubMed ID: 19546490
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Strong anisotropic lifetime orientation distributions of a two-level quantum emitter around a plasmonic nanorod.
    Liu JM; Liu JF; Yu YC; Zeng LY; Wang XH
    Nanoscale Res Lett; 2014; 9(1):194. PubMed ID: 24808801
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How To Identify Plasmons from the Optical Response of Nanostructures.
    Zhang R; Bursi L; Cox JD; Cui Y; Krauter CM; Alabastri A; Manjavacas A; Calzolari A; Corni S; Molinari E; Carter EA; García de Abajo FJ; Zhang H; Nordlander P
    ACS Nano; 2017 Jul; 11(7):7321-7335. PubMed ID: 28651057
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metal nanoparticle plasmons operating within a quantum lifetime.
    Taşgın ME
    Nanoscale; 2013 Sep; 5(18):8616-24. PubMed ID: 23897124
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optically enhanced emission of localized excitons in InxGa1-xN films by coupling to plasmons in a gold nanoparticle.
    Toropov AA; Shubina TV; Jmerik VN; Ivanov SV; Ogawa Y; Minami F
    Phys Rev Lett; 2009 Jul; 103(3):037403. PubMed ID: 19659316
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhanced near-green light emission from InGaN quantum wells by use of tunable plasmonic resonances in silver nanoparticle arrays.
    Henson J; Dimakis E; DiMaria J; Li R; Minissale S; Dal Negro L; Moustakas TD; Paiella R
    Opt Express; 2010 Sep; 18(20):21322-9. PubMed ID: 20941028
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Templated fabrication of periodic arrays of metallic and silicon nanorings with complex nanostructures.
    Liu X; Gozubenli N; Choi B; Jiang P; Meagher T; Jiang B
    Nanotechnology; 2015 Feb; 26(5):055603. PubMed ID: 25586863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.