These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 19792573)

  • 1. X-ray nanointerferometer based on si refractive bilenses.
    Snigirev A; Snigireva I; Kohn V; Yunkin V; Kuznetsov S; Grigoriev MB; Roth T; Vaughan G; Detlefs C
    Phys Rev Lett; 2009 Aug; 103(6):064801. PubMed ID: 19792573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray multilens interferometer based on Si refractive lenses.
    Snigirev A; Snigireva I; Lyubomirskiy M; Kohn V; Yunkin V; Kuznetsov S
    Opt Express; 2014 Oct; 22(21):25842-52. PubMed ID: 25401617
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pinhole interferometry with coherent hard X-rays.
    Leitenberger W; Wendrock H; Bischoff L; Weitkamp T
    J Synchrotron Radiat; 2004 Mar; 11(Pt 2):190-7. PubMed ID: 14960785
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 30-Lens interferometer for high-energy X-rays.
    Lyubomirskiy M; Snigireva I; Kohn V; Kuznetsov S; Yunkin V; Vaughan G; Snigirev A
    J Synchrotron Radiat; 2016 Sep; 23(Pt 5):1104-9. PubMed ID: 27577763
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray reflecto-interferometer based on compound refractive lenses.
    Lyatun S; Zverev D; Ershov P; Lyatun I; Konovalov O; Snigireva I; Snigirev A
    J Synchrotron Radiat; 2019 Sep; 26(Pt 5):1572-1581. PubMed ID: 31490146
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A review of recent work in sub-nanometre displacement measurement using optical and X-ray interferometry.
    Peggs GN; Yacoot A
    Philos Trans A Math Phys Eng Sci; 2002 May; 360(1794):953-68. PubMed ID: 12804288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-shot picosecond interferometry with one-nanometer resolution for dynamical surface morphology using a soft X-ray laser.
    Suemoto T; Terakawa K; Ochi Y; Tomita T; Yamamoto M; Hasegawa N; Deki M; Minami Y; Kawachi T
    Opt Express; 2010 Jun; 18(13):14114-22. PubMed ID: 20588544
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ronchi test for characterization of nanofocusing optics at a hard x-ray free-electron laser.
    Nilsson D; Uhlén F; Holmberg A; Hertz HM; Schropp A; Patommel J; Hoppe R; Seiboth F; Meier V; Schroer CG; Galtier E; Nagler B; Lee HJ; Vogt U
    Opt Lett; 2012 Dec; 37(24):5046-8. PubMed ID: 23258000
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-spectroscopic refractometric nanosensor based on a tilted slit-groove plasmonic interferometer.
    Li X; Tan Q; Bai B; Jin G
    Opt Express; 2011 Oct; 19(21):20691-703. PubMed ID: 21997080
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Displacement interferometry with stabilization of wavelength in air.
    Lazar J; Holá M; Cíp O; Cížek M; Hrabina J; Buchta Z
    Opt Express; 2012 Dec; 20(25):27830-7. PubMed ID: 23262728
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Low-coherent quantitative phase microscope for nanometer-scale measurement of living cells morphology.
    Yamauchi T; Iwai H; Miwa M; Yamashita Y
    Opt Express; 2008 Aug; 16(16):12227-38. PubMed ID: 18679500
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Boosting phase contrast with a grating Bonse-Hart interferometer of 200 nanometre grating period.
    Wen H; Gomella AA; Patel A; Wolfe DE; Lynch SK; Xiao X; Morgan N
    Philos Trans A Math Phys Eng Sci; 2014 Mar; 372(2010):20130028. PubMed ID: 24470412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fine-pitched microgratings encoded by interference of UV femtosecond laser pulses.
    Kamioka H; Miura T; Kawamura K; Hirano M; Hosono H
    J Nanosci Nanotechnol; 2002; 2(3-4):321-3. PubMed ID: 12908258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Analysis of field of view limited by a multi-line X-ray source and its improvement for grating interferometry.
    Du Y; Huang J; Lin D; Niu H
    Anal Bioanal Chem; 2012 Aug; 404(3):793-7. PubMed ID: 22729354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. X-ray grating interferometer for materials-science imaging at a low-coherent wiggler source.
    Herzen J; Donath T; Beckmann F; Ogurreck M; David C; Mohr J; Pfeiffer F; Schreyer A
    Rev Sci Instrum; 2011 Nov; 82(11):113711. PubMed ID: 22128988
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulation framework for coherent and incoherent X-ray imaging and its application in Talbot-Lau dark-field imaging.
    Ritter A; Bartl P; Bayer F; Gödel KC; Haas W; Michel T; Pelzer G; Rieger J; Weber T; Zang A; Anton G
    Opt Express; 2014 Sep; 22(19):23276-89. PubMed ID: 25321796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Compact and portable low-coherence interferometer with off-axis geometry for quantitative phase microscopy and nanoscopy.
    Girshovitz P; Shaked NT
    Opt Express; 2013 Mar; 21(5):5701-14. PubMed ID: 23482143
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Observation of a bent crystal-lattice by x-ray interferometry.
    Massa E; Mana G; Ferroglio L
    Opt Express; 2009 Jun; 17(13):11172-8. PubMed ID: 19550517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of polychromaticity effects in X-ray Talbot interferometer.
    Wang Z; Zhu P; Huang W; Yuan Q; Liu X; Zhang K; Hong Y; Zhang H; Ge X; Gao K; Wu Z
    Anal Bioanal Chem; 2010 Jul; 397(6):2137-41. PubMed ID: 20358186
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Realization of optical carpets in the Talbot and Talbot-Lau configurations.
    Case WB; Tomandl M; Deachapunya S; Arndt M
    Opt Express; 2009 Nov; 17(23):20966-74. PubMed ID: 19997335
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.