These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

243 related articles for article (PubMed ID: 19792589)

  • 1. Hopping modulation in a one-dimensional Fermi-Hubbard Hamiltonian.
    Massel F; Leskinen MJ; Törmä P
    Phys Rev Lett; 2009 Aug; 103(6):066404. PubMed ID: 19792589
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the Fulde-Ferrell-Larkin-Ovchinnikov phase by double occupancy modulation spectroscopy.
    Korolyuk A; Massel F; Törmä P
    Phys Rev Lett; 2010 Jun; 104(23):236402. PubMed ID: 20867255
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exploring unconventional Hubbard models with doubly modulated lattice gases.
    Greschner S; Santos L; Poletti D
    Phys Rev Lett; 2014 Oct; 113(18):183002. PubMed ID: 25396367
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Expansion dynamics in the one-dimensional Fermi-Hubbard model.
    Kajala J; Massel F; Törmä P
    Phys Rev Lett; 2011 May; 106(20):206401. PubMed ID: 21668245
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nontrivial Haldane phase of an atomic two-component Fermi gas trapped in a 1D optical lattice.
    Kobayashi K; Okumura M; Ota Y; Yamada S; Machida M
    Phys Rev Lett; 2012 Dec; 109(23):235302. PubMed ID: 23368216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Novel superfluidity in a trapped gas of Fermi atoms with repulsive interaction loaded on an optical lattice.
    Machida M; Yamada S; Ohashi Y; Matsumoto H
    Phys Rev Lett; 2004 Nov; 93(20):200402. PubMed ID: 15600902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effective Hamiltonians for Rapidly Driven Many-Body Lattice Systems: Induced Exchange Interactions and Density-Dependent Hoppings.
    Itin AP; Katsnelson MI
    Phys Rev Lett; 2015 Aug; 115(7):075301. PubMed ID: 26317726
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Floquet Dynamics in Driven Fermi-Hubbard Systems.
    Messer M; Sandholzer K; Görg F; Minguzzi J; Desbuquois R; Esslinger T
    Phys Rev Lett; 2018 Dec; 121(23):233603. PubMed ID: 30576215
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic order in the Hubbard model in three dimensions and the crossover to two dimensions.
    Xu J; Chiesa S; Walter EJ; Zhang S
    J Phys Condens Matter; 2013 Oct; 25(41):415602. PubMed ID: 24047878
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exact Bethe Ansatz Spectrum of a Tight-Binding Chain with Dephasing Noise.
    Medvedyeva MV; Essler FH; Prosen T
    Phys Rev Lett; 2016 Sep; 117(13):137202. PubMed ID: 27715082
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The cumulant Green's functions method for the Hubbard model.
    Lira RN; Riseborough PS; Silva-Valencia J; Figueira MS
    J Phys Condens Matter; 2023 Mar; 35(24):. PubMed ID: 36944247
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental realization of an extended Fermi-Hubbard model using a 2D lattice of dopant-based quantum dots.
    Wang X; Khatami E; Fei F; Wyrick J; Namboodiri P; Kashid R; Rigosi AF; Bryant G; Silver R
    Nat Commun; 2022 Nov; 13(1):6824. PubMed ID: 36369280
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spectral properties near the Mott transition in the one-dimensional Hubbard model.
    Kohno M
    Phys Rev Lett; 2010 Sep; 105(10):106402. PubMed ID: 20867533
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Lattice models with N=2 supersymmetry.
    Fendley P; Schoutens K; de Boer J
    Phys Rev Lett; 2003 Mar; 90(12):120402. PubMed ID: 12688857
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Quantum Simulation Meets Nonequilibrium Dynamical Mean-Field Theory: Exploring the Periodically Driven, Strongly Correlated Fermi-Hubbard Model.
    Sandholzer K; Murakami Y; Görg F; Minguzzi J; Messer M; Desbuquois R; Eckstein M; Werner P; Esslinger T
    Phys Rev Lett; 2019 Nov; 123(19):193602. PubMed ID: 31765173
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Exact Solution of the Bose-Hubbard Model with Unidirectional Hopping.
    Zheng M; Qiao Y; Wang Y; Cao J; Chen S
    Phys Rev Lett; 2024 Feb; 132(8):086502. PubMed ID: 38457738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Feed-forward neural network based variational wave function for the fermionic Hubbard model in one dimension.
    Sarder MTH; Medhi A
    J Phys Condens Matter; 2022 Jul; 34(37):. PubMed ID: 35772394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fermi condensation near van Hove singularities within the Hubbard model on the triangular lattice.
    Yudin D; Hirschmeier D; Hafermann H; Eriksson O; Lichtenstein AI; Katsnelson MI
    Phys Rev Lett; 2014 Feb; 112(7):070403. PubMed ID: 24579572
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamically generated double occupancy as a probe of cold atom systems.
    Huber SD; Rüegg A
    Phys Rev Lett; 2009 Feb; 102(6):065301. PubMed ID: 19257599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Persistent current and Drude weight for the one-dimensional Hubbard model from current lattice density functional theory.
    Akande A; Sanvito S
    J Phys Condens Matter; 2012 Feb; 24(5):055602. PubMed ID: 22248571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.