These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 19792691)

  • 1. Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices.
    Balvin M; Sohn E; Iracki T; Drazer G; Frechette J
    Phys Rev Lett; 2009 Aug; 103(7):078301. PubMed ID: 19792691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gravity driven deterministic lateral displacement for particle separation in microfluidic devices.
    Devendra R; Drazer G
    Anal Chem; 2012 Dec; 84(24):10621-7. PubMed ID: 23137317
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Directional locking in deterministic lateral-displacement microfluidic separation systems.
    Risbud SR; Drazer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2014 Jul; 90(1):012302. PubMed ID: 25122298
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deterministic microfluidic ratchet.
    Loutherback K; Puchalla J; Austin RH; Sturm JC
    Phys Rev Lett; 2009 Jan; 102(4):045301. PubMed ID: 19257437
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tuneable separation in elastomeric microfluidics devices.
    Beech JP; Tegenfeldt JO
    Lab Chip; 2008 May; 8(5):657-9. PubMed ID: 18432332
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Emergent behavior in particle-laden microfluidic systems informs strategies for improving cell and particle separations.
    Vahey MD; Voldman J
    Lab Chip; 2011 Jun; 11(12):2071-80. PubMed ID: 21541439
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charge-based particle separation in microfluidic devices using combined hydrodynamic and electrokinetic effects.
    Jellema LC; Mey T; Koster S; Verpoorte E
    Lab Chip; 2009 Jul; 9(13):1914-25. PubMed ID: 19532967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Force driven separation of drops by deterministic lateral displacement.
    Bowman T; Frechette J; Drazer G
    Lab Chip; 2012 Aug; 12(16):2903-8. PubMed ID: 22699242
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Droplet size based separation by deterministic lateral displacement-separating droplets by cell--induced shrinking.
    Joensson HN; Uhlén M; Svahn HA
    Lab Chip; 2011 Apr; 11(7):1305-10. PubMed ID: 21321749
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of process parameters on separation efficiency in a deterministic lateral displacement device.
    Aghajanloo B; Inglis DW; Ejeian F; Tehrani AF; Esfahani MHN; Saghafian M; Canavese G; Marasso SL
    J Chromatogr A; 2022 Aug; 1678():463295. PubMed ID: 35878543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Traveling-wave electrophoresis for microfluidic separations.
    Edwards BF; Timperman AT; Carroll RL; Jo K; Mease JM; Schiffbauer JE
    Phys Rev Lett; 2009 Feb; 102(7):076103. PubMed ID: 19257694
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of suspended particles in microfluidic systems by directional locking in periodic fields.
    Herrmann J; Karweit M; Drazer G
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jun; 79(6 Pt 1):061404. PubMed ID: 19658506
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Feedback control system simulator for the control of biological cells in microfluidic cross slots and integrated microfluidic systems.
    Curtis MD; Sheard GJ; Fouras A
    Lab Chip; 2011 Jul; 11(14):2343-51. PubMed ID: 21611664
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully integrated microfluidic separations systems for biochemical analysis.
    Roman GT; Kennedy RT
    J Chromatogr A; 2007 Oct; 1168(1-2):170-88; discussion 169. PubMed ID: 17659293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sheathless hydrophoretic particle focusing in a microchannel with exponentially increasing obstacle arrays.
    Choi S; Park JK
    Anal Chem; 2008 Apr; 80(8):3035-9. PubMed ID: 18355090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lateral and cross-lateral focusing of spherical particles in a square microchannel.
    Choi YS; Seo KW; Lee SJ
    Lab Chip; 2011 Feb; 11(3):460-5. PubMed ID: 21072415
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acceleration of absolute negative mobility.
    Regtmeier J; Grauwin S; Eichhorn R; Reimann P; Anselmetti D; Ros A
    J Sep Sci; 2007 Jul; 30(10):1461-7. PubMed ID: 17623426
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrophoretic sorting of micrometer and submicrometer particles using anisotropic microfluidic obstacles.
    Choi S; Song S; Choi C; Park JK
    Anal Chem; 2009 Jan; 81(1):50-5. PubMed ID: 19117444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Continuous flow separations in microfluidic devices.
    Pamme N
    Lab Chip; 2007 Dec; 7(12):1644-59. PubMed ID: 18030382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Numerical Study of Pillar Shapes in Deterministic Lateral Displacement Microfluidic Arrays for Spherical Particle Separation.
    Wei J; Song H; Shen Z; He Y; Xu X; Zhang Y; Li BN
    IEEE Trans Nanobioscience; 2015 Sep; 14(6):660-7. PubMed ID: 26011890
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.