These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19792692)

  • 1. Melting of iron under Earth's core conditions from diffusion Monte Carlo free energy calculations.
    Sola E; Alfè D
    Phys Rev Lett; 2009 Aug; 103(7):078501. PubMed ID: 19792692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melting of iron at the physical conditions of the Earth's core.
    Nguyen JH; Holmes NC
    Nature; 2004 Jan; 427(6972):339-42. PubMed ID: 14737164
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Melting Curve of Iron to 250 Gigapascals: A Constraint on the Temperature at Earth's Center.
    Williams Q; Jeanloz R; Bass J; Svendsen B; Ahrens TJ
    Science; 1987 Apr; 236(4798):181-2. PubMed ID: 17789782
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Melting of iron at Earth's inner core boundary based on fast X-ray diffraction.
    Anzellini S; Dewaele A; Mezouar M; Loubeyre P; Morard G
    Science; 2013 Apr; 340(6131):464-6. PubMed ID: 23620049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physics of iron at Earth's core conditions.
    Laio A; Bernard S; Chiarotti GL; Scandolo S; Tosatti E
    Science; 2000 Feb; 287(5455):1027-30. PubMed ID: 10669412
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Melting of iron determined by X-ray absorption spectroscopy to 100 GPa.
    Aquilanti G; Trapananti A; Karandikar A; Kantor I; Marini C; Mathon O; Pascarelli S; Boehler R
    Proc Natl Acad Sci U S A; 2015 Sep; 112(39):12042-5. PubMed ID: 26371317
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Constraints on the composition of the Earth's core from ab initio calculations.
    Alfe D; Gillan MJ; Price GD
    Nature; 2000 May; 405(6783):172-5. PubMed ID: 10821270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temperatures in Earth's Core Based on Melting and Phase Transformation Experiments on Iron.
    Saxena SK; Shen G; Lazor P
    Science; 1994 Apr; 264(5157):405-7. PubMed ID: 17836902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Viscosity of hcp iron at Earth's inner core conditions from density functional theory.
    Ritterbex S; Tsuchiya T
    Sci Rep; 2020 Apr; 10(1):6311. PubMed ID: 32286388
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Constraints on Earth's inner core composition inferred from measurements of the sound velocity of hcp-iron in extreme conditions.
    Sakamaki T; Ohtani E; Fukui H; Kamada S; Takahashi S; Sakairi T; Takahata A; Sakai T; Tsutsui S; Ishikawa D; Shiraishi R; Seto Y; Tsuchiya T; Baron AQ
    Sci Adv; 2016 Feb; 2(2):e1500802. PubMed ID: 26933678
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The ab initio simulation of the Earth's core.
    Alfè D; Gillan MJ; Vocadlo L; Brodholt J; Price GD
    Philos Trans A Math Phys Eng Sci; 2002 Jun; 360(1795):1227-44. PubMed ID: 12804276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical interaction of Fe and Al(2)O3 as a source of heterogeneity at the Earth's core-mantle boundary.
    Dubrovinsky L; Annersten H; Dubrovinskaia N; Westman F; Harryson H; Fabrichnaya O; Carlson S
    Nature; 2001 Aug; 412(6846):527-9. PubMed ID: 11484050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermal and electrical conductivity of iron at Earth's core conditions.
    Pozzo M; Davies C; Gubbins D; Alfè D
    Nature; 2012 Apr; 485(7398):355-8. PubMed ID: 22495307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Stability of the body-centred-cubic phase of iron in the Earth's inner core.
    Belonoshko AB; Ahuja R; Johansson B
    Nature; 2003 Aug; 424(6952):1032-4. PubMed ID: 12944963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of thermal conductivity in solid iron at planetary core conditions.
    Konôpková Z; McWilliams RS; Gómez-Pérez N; Goncharov AF
    Nature; 2016 Jun; 534(7605):99-101. PubMed ID: 27251283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shock Response and Phase Transitions of MgO at Planetary Impact Conditions.
    Root S; Shulenburger L; Lemke RW; Dolan DH; Mattsson TR; Desjarlais MP
    Phys Rev Lett; 2015 Nov; 115(19):198501. PubMed ID: 26588422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Possible thermal and chemical stabilization of body-centred-cubic iron in the Earth's core.
    Vocadlo L; Alfè D; Gillan MJ; Wood IG; Brodholt JP; Price GD
    Nature; 2003 Jul; 424(6948):536-9. PubMed ID: 12891353
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Seismological evidence for mosaic structure of the surface of the Earth's inner core.
    Krasnoshchekov DN; Kaazik PB; Ovtchinnikov VM
    Nature; 2005 May; 435(7041):483-7. PubMed ID: 15917806
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hidden carbon in Earth's inner core revealed by shear softening in dense Fe7C3.
    Chen B; Li Z; Zhang D; Liu J; Hu MY; Zhao J; Bi W; Alp EE; Xiao Y; Chow P; Li J
    Proc Natl Acad Sci U S A; 2014 Dec; 111(50):17755-8. PubMed ID: 25453077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An ab initio molecular dynamics study of iron phases at high pressure and temperature.
    Belonoshko AB; Arapan S; Rosengren A
    J Phys Condens Matter; 2011 Dec; 23(48):485402. PubMed ID: 22080759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.