These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 19792692)

  • 21. Low thermal conductivity of iron-silicon alloys at Earth's core conditions with implications for the geodynamo.
    Hsieh WP; Goncharov AF; Labrosse S; Holtgrewe N; Lobanov SS; Chuvashova I; Deschamps F; Lin JF
    Nat Commun; 2020 Jul; 11(1):3332. PubMed ID: 32620830
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Elasticity of iron at the temperature of the Earth's inner core.
    Steinle-Neumann G; Stixrude L; Cohen RE; Gülseren O
    Nature; 2001 Sep; 413(6851):57-60. PubMed ID: 11544523
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Experimental determination of the electrical resistivity of iron at Earth's core conditions.
    Ohta K; Kuwayama Y; Hirose K; Shimizu K; Ohishi Y
    Nature; 2016 Jun; 534(7605):95-8. PubMed ID: 27251282
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Saturation of electrical resistivity of solid iron at Earth's core conditions.
    Pozzo M; Alfè D
    Springerplus; 2016; 5():256. PubMed ID: 27026948
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Experimental Evidence for a New Iron Phase and Implications for Earth's Core.
    Saxena SK; Shen G; Lazor P
    Science; 1993 May; 260(5112):1312-4. PubMed ID: 17755425
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cooperative diffusion in body-centered cubic iron in Earth and super-Earths' inner core conditions.
    Ghosh M; Zhang S; Hu L; Hu SX
    J Phys Condens Matter; 2023 Feb; 35(15):. PubMed ID: 36753774
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Iron-silica interaction at extreme conditions and the electrically conducting layer at the base of Earth's mantle.
    Dubrovinsky L; Dubrovinskaia N; Langenhorst F; Dobson D; Rubie D; Gessmann C; Abrikosov IA; Johansson B; Baykov VI; Vitos L; Le Bihan T; Crichton WA; Dmitriev V; Weber HP
    Nature; 2003 Mar; 422(6927):58-61. PubMed ID: 12621431
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The plastic deformation of iron at pressures of the Earth's inner core.
    Wenk HR; Matthies S; Hemley RJ; Mao HK; Shu J
    Nature; 2000 Jun; 405(6790):1044-7. PubMed ID: 10890442
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Shear relaxation in iron under the conditions of earth's inner core.
    Belonoshko AB; Bryk T; Rosengren A
    Phys Rev Lett; 2010 Jun; 104(24):245703. PubMed ID: 20867313
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Models of the Earth's Core.
    Stevenson DJ
    Science; 1981 Nov; 214(4521):611-9. PubMed ID: 17839632
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Melting of the Earth's inner core.
    Gubbins D; Sreenivasan B; Mound J; Rost S
    Nature; 2011 May; 473(7347):361-3. PubMed ID: 21593868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Shear properties of Earth's inner core constrained by a detection of
    Tkalčić H; Phạm TS
    Science; 2018 Oct; 362(6412):329-332. PubMed ID: 30337407
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ X-Ray study of thermal expansion and phase transition of iron at multimegabar pressure.
    Dubrovinsky LS; Saxena SK; Tutti F; Rekhi S; LeBehan T
    Phys Rev Lett; 2000 Feb; 84(8):1720-3. PubMed ID: 11017609
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dissociation of high-pressure solid molecular hydrogen: a quantum Monte Carlo and anharmonic vibrational study.
    Azadi S; Monserrat B; Foulkes WM; Needs RJ
    Phys Rev Lett; 2014 Apr; 112(16):165501. PubMed ID: 24815656
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Experimental constraints on light elements in the Earth's outer core.
    Zhang Y; Sekine T; He H; Yu Y; Liu F; Zhang M
    Sci Rep; 2016 Mar; 6():22473. PubMed ID: 26932596
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrical resistivity and thermal conductivity of liquid Fe alloys at high P and T, and heat flux in Earth's core.
    de Koker N; Steinle-Neumann G; Vlcek V
    Proc Natl Acad Sci U S A; 2012 Mar; 109(11):4070-3. PubMed ID: 22375035
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Stability and anisotropy of (Fe
    Huang S; Wu X; Qin S
    Sci Rep; 2018 Jan; 8(1):236. PubMed ID: 29321631
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Measuring the melting curve of iron at super-Earth core conditions.
    Kraus RG; Hemley RJ; Ali SJ; Belof JL; Benedict LX; Bernier J; Braun D; Cohen RE; Collins GW; Coppari F; Desjarlais MP; Fratanduono D; Hamel S; Krygier A; Lazicki A; Mcnaney J; Millot M; Myint PC; Newman MG; Rygg JR; Sterbentz DM; Stewart ST; Stixrude L; Swift DC; Wehrenberg C; Eggert JH
    Science; 2022 Jan; 375(6577):202-205. PubMed ID: 35025665
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mars: a new core-crystallization regime.
    Stewart AJ; Schmidt MW; van Westrenen W; Liebske C
    Science; 2007 Jun; 316(5829):1323-5. PubMed ID: 17540900
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Pressure effects on the transitions between disordered phases in supercooled liquid silicon.
    Garcez KM; Antonelli A
    J Chem Phys; 2011 Nov; 135(20):204508. PubMed ID: 22128944
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.