These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
108 related articles for article (PubMed ID: 19792697)
1. Microscopic theory of the Andreev gap. Micklitz T; Altland A Phys Rev Lett; 2009 Aug; 103(8):080403. PubMed ID: 19792697 [TBL] [Abstract][Full Text] [Related]
2. Semiclassical gaps in the density of states of chaotic Andreev billiards. Kuipers J; Waltner D; Petitjean C; Berkolaiko G; Richter K Phys Rev Lett; 2010 Jan; 104(2):027001. PubMed ID: 20366617 [TBL] [Abstract][Full Text] [Related]
4. Ehrenfest-time-dependent excitation gap in a chaotic Andreev billiard. Adagideli I; Beenakker CW Phys Rev Lett; 2002 Dec; 89(23):237002. PubMed ID: 12485030 [TBL] [Abstract][Full Text] [Related]
5. "Smile" gap in the density of states of a cavity between superconductors. Reutlinger J; Glazman L; Nazarov YV; Belzig W Phys Rev Lett; 2014 Feb; 112(6):067001. PubMed ID: 24580703 [TBL] [Abstract][Full Text] [Related]
6. Spectrum of the Andreev billiard and giant fluctuations of the Ehrenfest time. Silvestrov PG Phys Rev Lett; 2006 Aug; 97(6):067004. PubMed ID: 17026192 [TBL] [Abstract][Full Text] [Related]
7. Effect of surface Andreev bound states on the Bean-Livingston barrier in d-wave superconductors. Iniotakis C; Dahm T; Schopohl N Phys Rev Lett; 2008 Jan; 100(3):037002. PubMed ID: 18233026 [TBL] [Abstract][Full Text] [Related]
8. Quantum Andreev map: a paradigm of quantum chaos in superconductivity. Jacquod P; Schomerus H; Beenakker CW Phys Rev Lett; 2003 May; 90(20):207004. PubMed ID: 12785918 [TBL] [Abstract][Full Text] [Related]
9. Anisotropic diamagnetic response in type-II superconductors with gap and Fermi-surface anisotropies. Adachi H; Miranović P; Ichioka M; Machida K Phys Rev Lett; 2005 Feb; 94(6):067007. PubMed ID: 15783772 [TBL] [Abstract][Full Text] [Related]
12. Crossover between classical and quantum shot noise in chaotic cavities. Oberholzer S; Sukhorukov EV; Schönenberger C Nature; 2002 Feb; 415(6873):765-7. PubMed ID: 11845201 [TBL] [Abstract][Full Text] [Related]
13. Andreev spectra and subgap bound states in multiband superconductors. Golubov AA; Brinkman A; Tanaka Y; Mazin II; Dolgov OV Phys Rev Lett; 2009 Aug; 103(7):077003. PubMed ID: 19792677 [TBL] [Abstract][Full Text] [Related]
14. In-gap states of a quantum dot coupled between a normal and a superconducting lead. Barański J; Domański T J Phys Condens Matter; 2013 Oct; 25(43):435305. PubMed ID: 24107469 [TBL] [Abstract][Full Text] [Related]
15. Quantum corrections to fidelity decay in chaotic systems. Gutkin B; Waltner D; Gutiérrez M; Kuipers J; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Mar; 81(3 Pt 2):036222. PubMed ID: 20365847 [TBL] [Abstract][Full Text] [Related]
16. Ubiquitous V-shape density of states in a mixed state of clean limit type II superconductors. Nakai N; Miranović P; Ichioka M; Hess HF; Uchiyama K; Nishimori H; Kaneko S; Nishida N; Machida K Phys Rev Lett; 2006 Oct; 97(14):147001. PubMed ID: 17155284 [TBL] [Abstract][Full Text] [Related]
17. New Andreev-type states in superconducting nanowires. Shanenko AA; Croitoru MD; Mints RG; Peeters FM Phys Rev Lett; 2007 Aug; 99(6):067007. PubMed ID: 17930861 [TBL] [Abstract][Full Text] [Related]
19. Golden rule kinetics of transfer reactions in condensed phase: the microscopic model of electron transfer reactions in disordered solid matrices. Basilevsky MV; Odinokov AV; Titov SV; Mitina EA J Chem Phys; 2013 Dec; 139(23):234102. PubMed ID: 24359347 [TBL] [Abstract][Full Text] [Related]
20. Semiclassical theory for decay and fragmentation processes in chaotic quantum systems. Gutiérrez M; Waltner D; Kuipers J; Richter K Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046212. PubMed ID: 19518317 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]