These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

325 related articles for article (PubMed ID: 19792763)

  • 1. Dephasing of exciton polaritons in photoexcited InGaAs quantum dots in GaAs nanocavities.
    Laucht A; Hauke N; Villas-Bôas JM; Hofbauer F; Böhm G; Kaniber M; Finley JJ
    Phys Rev Lett; 2009 Aug; 103(8):087405. PubMed ID: 19792763
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dephasing of triplet-sideband optical emission of a resonantly driven InAs/GaAs quantum dot inside a microcavity.
    Ulrich SM; Ates S; Reitzenstein S; Löffler A; Forchel A; Michler P
    Phys Rev Lett; 2011 Jun; 106(24):247402. PubMed ID: 21770597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Excitation-induced dephasing in a resonantly driven InAs/GaAs quantum dot.
    Monniello L; Tonin C; Hostein R; Lemaitre A; Martinez A; Voliotis V; Grousson R
    Phys Rev Lett; 2013 Jul; 111(2):026403. PubMed ID: 23889424
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exciton-photon strong-coupling regime for a single quantum dot embedded in a microcavity.
    Peter E; Senellart P; Martrou D; Lemaître A; Hours J; Gérard JM; Bloch J
    Phys Rev Lett; 2005 Aug; 95(6):067401. PubMed ID: 16090987
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The single quantum dot-laser: lasing and strong coupling in the high-excitation regime.
    Gies C; Florian M; Gartner P; Jahnke F
    Opt Express; 2011 Jul; 19(15):14370-88. PubMed ID: 21934800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong coupling of two interacting excitons confined in a nanocavity-quantum dot system.
    Cárdenas PC; Quesada N; Vinck-Posada H; Rodríguez BA
    J Phys Condens Matter; 2011 Jul; 23(26):265304. PubMed ID: 21673402
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Quantum interference induced photon blockade in a coupled single quantum dot-cavity system.
    Tang J; Geng W; Xu X
    Sci Rep; 2015 Mar; 5():9252. PubMed ID: 25783560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon-mediated coupling of InGaAs/GaAs quantum-dot excitons to photonic crystal cavities.
    Calic M; Gallo P; Felici M; Atlasov KA; Dwir B; Rudra A; Biasiol G; Sorba L; Tarel G; Savona V; Kapon E
    Phys Rev Lett; 2011 Jun; 106(22):227402. PubMed ID: 21702633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Optical determination of vacuum Rabi splitting in a semiconductor quantum dot induced by a metal nanoparticle.
    He Y; Jiang C; Chen B; Li JJ; Zhu KD
    Opt Lett; 2012 Jul; 37(14):2943-5. PubMed ID: 22825186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Damping of exciton Rabi rotations by acoustic phonons in optically excited InGaAs/GaAs quantum dots.
    Ramsay AJ; Gopal AV; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Jan; 104(1):017402. PubMed ID: 20366392
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photonic crystal nanocavity laser with a single quantum dot gain.
    Nomura M; Kumagai N; Iwamoto S; Ota Y; Arakawa Y
    Opt Express; 2009 Aug; 17(18):15975-82. PubMed ID: 19724596
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Density operator of a system pumped with polaritons: a Jaynes-Cummings-like approach.
    Quesada N; Vinck-Posada H; Rodríguez BA
    J Phys Condens Matter; 2011 Jan; 23(2):025301. PubMed ID: 21406838
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photon emission by nanocavity-enhanced quantum anti-Zeno effect in solid-state cavity quantum-electrodynamics.
    Yamaguchi M; Asano T; Noda S
    Opt Express; 2008 Oct; 16(22):18067-81. PubMed ID: 18958086
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of optical excitation power on the emission spectra of a strongly coupled quantum dot-micropillar system.
    Münch S; Reitzenstein S; Franeck P; Löffler A; Heindel T; Höfling S; Worschech L; Forchel A
    Opt Express; 2009 Jul; 17(15):12821-8. PubMed ID: 19654688
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity.
    Yoshie T; Scherer A; Hendrickson J; Khitrova G; Gibbs HM; Rupper G; Ell C; Shchekin OB; Deppe DG
    Nature; 2004 Nov; 432(7014):200-3. PubMed ID: 15538363
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes.
    Graham MW; Ma YZ; Green AA; Hersam MC; Fleming GR
    J Chem Phys; 2011 Jan; 134(3):034504. PubMed ID: 21261365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phonon-induced Rabi-frequency renormalization of optically driven single InGaAs/GaAs quantum dots.
    Ramsay AJ; Godden TM; Boyle SJ; Gauger EM; Nazir A; Lovett BW; Fox AM; Skolnick MS
    Phys Rev Lett; 2010 Oct; 105(17):177402. PubMed ID: 21231078
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dynamic Stark effect in strongly coupled microcavity exciton polaritons.
    Hayat A; Lange C; Rozema LA; Darabi A; van Driel HM; Steinberg AM; Nelsen B; Snoke DW; Pfeiffer LN; West KW
    Phys Rev Lett; 2012 Jul; 109(3):033605. PubMed ID: 22861850
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.