These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

201 related articles for article (PubMed ID: 19792777)

  • 21. Spin waves and collisional frequency shifts of a trapped-atom clock.
    Maineult W; Deutsch C; Gibble K; Reichel J; Rosenbusch P
    Phys Rev Lett; 2012 Jul; 109(2):020407. PubMed ID: 23030137
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Accurate optical lattice clock with 87Sr atoms.
    Le Targat R; Baillard X; Fouché M; Brusch A; Tcherbakoff O; Rovera GD; Lemonde P
    Phys Rev Lett; 2006 Sep; 97(13):130801. PubMed ID: 17026019
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Photoionization cross sections of ultracold
    Witkowski M; Bilicki S; Bober M; Kovačić D; Singh V; Tonoyan A; Zawada M
    Opt Express; 2022 Jun; 30(12):21423-21438. PubMed ID: 36224862
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Resolved atomic interaction sidebands in an optical clock transition.
    Bishof M; Lin Y; Swallows MD; Gorshkov AV; Ye J; Rey AM
    Phys Rev Lett; 2011 Jun; 106(25):250801. PubMed ID: 21770623
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A pyramid MOT with integrated optical cavities as a cold atom platform for an optical lattice clock.
    Bowden W; Hobson R; Hill IR; Vianello A; Schioppo M; Silva A; Margolis HS; Baird PEG; Gill P
    Sci Rep; 2019 Aug; 9(1):11704. PubMed ID: 31406188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Universal ultracold collision rates for polar molecules of two alkali-metal atoms.
    Julienne PS; Hanna TM; Idziaszek Z
    Phys Chem Chem Phys; 2011 Nov; 13(42):19114-24. PubMed ID: 21773648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Optical lattice induced light shifts in an yb atomic clock.
    Barber ZW; Stalnaker JE; Lemke ND; Poli N; Oates CW; Fortier TM; Diddams SA; Hollberg L; Hoyt CW; Taichenachev AV; Yudin VI
    Phys Rev Lett; 2008 Mar; 100(10):103002. PubMed ID: 18352181
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical lattice trapping of 199Hg and determination of the magic wavelength for the ultraviolet 1S(0)↔3P(0) clock transition.
    Yi L; Mejri S; McFerran JJ; Le Coq Y; Bize S
    Phys Rev Lett; 2011 Feb; 106(7):073005. PubMed ID: 21405514
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Spin-orbit-coupled fermions in an optical lattice clock.
    Kolkowitz S; Bromley SL; Bothwell T; Wall ML; Marti GE; Koller AP; Zhang X; Rey AM; Ye J
    Nature; 2017 Feb; 542(7639):66-70. PubMed ID: 28002409
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Systematic uncertainty due to background-gas collisions in trapped-ion optical clocks.
    Hankin AM; Clements ER; Huang Y; Brewer SM; Chen JS; Chou CW; Hume DB; Leibrandt DR
    Phys Rev A (Coll Park); 2019 Sep; 100(3):. PubMed ID: 36452133
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Clock with 8×10^{-19} Systematic Uncertainty.
    Aeppli A; Kim K; Warfield W; Safronova MS; Ye J
    Phys Rev Lett; 2024 Jul; 133(2):023401. PubMed ID: 39073965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Systematic evaluation of a
    Gao Q; Zhou M; Han C; Li S; Zhang S; Yao Y; Li B; Qiao H; Ai D; Lou G; Zhang M; Jiang Y; Bi Z; Ma L; Xu X
    Sci Rep; 2018 May; 8(1):8022. PubMed ID: 29789631
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Emergence of multi-body interactions in a fermionic lattice clock.
    Goban A; Hutson RB; Marti GE; Campbell SL; Perlin MA; Julienne PS; D'Incao JP; Rey AM; Ye J
    Nature; 2018 Nov; 563(7731):369-373. PubMed ID: 30429544
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Trapping of neutral mercury atoms and prospects for optical lattice clocks.
    Hachisu H; Miyagishi K; Porsev SG; Derevianko A; Ovsiannikov VD; Pal'chikov VG; Takamoto M; Katori H
    Phys Rev Lett; 2008 Feb; 100(5):053001. PubMed ID: 18352368
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Accuracy evaluation of an optical lattice clock with bosonic atoms.
    Baillard X; Fouché M; Le Targat R; Westergaard PG; Lecallier A; Le Coq Y; Rovera GD; Bize S; Lemonde P
    Opt Lett; 2007 Jul; 32(13):1812-4. PubMed ID: 17603578
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Towards a Mg Lattice Clock: Observation of the ^{1}S_{0}-^{3}P_{0} Transition and Determination of the Magic Wavelength.
    Kulosa AP; Fim D; Zipfel KH; Rühmann S; Sauer S; Jha N; Gibble K; Ertmer W; Rasel EM; Safronova MS; Safronova UI; Porsev SG
    Phys Rev Lett; 2015 Dec; 115(24):240801. PubMed ID: 26705620
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Collisionally induced transport in periodic potentials.
    Ott H; de Mirandes E; Ferlaino F; Roati G; Modugno G; Inguscio M
    Phys Rev Lett; 2004 Apr; 92(16):160601. PubMed ID: 15169210
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Prospects for optical clocks with a blue-detuned lattice.
    Takamoto M; Katori H; Marmo SI; Ovsiannikov VD; Pal'chikov VG
    Phys Rev Lett; 2009 Feb; 102(6):063002. PubMed ID: 19257584
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Floquet Engineering Hz-Level Rabi Spectra in Shallow Optical Lattice Clock.
    Yin MJ; Lu XT; Li T; Xia JJ; Wang T; Zhang XF; Chang H
    Phys Rev Lett; 2022 Feb; 128(7):073603. PubMed ID: 35244448
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Excited-Band Coherent Delocalization for Improved Optical Lattice Clock Performance.
    Siegel JL; McGrew WF; Hassan YS; Chen CC; Beloy K; Grogan T; Zhang X; Ludlow AD
    Phys Rev Lett; 2024 Mar; 132(13):133201. PubMed ID: 38613284
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.