These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 19792819)
1. Observation of a novel orbital selective Mott transition in Ca(1.8)Sr(0.2)RuO(4). Neupane M; Richard P; Pan ZH; Xu YM; Jin R; Mandrus D; Dai X; Fang Z; Wang Z; Ding H Phys Rev Lett; 2009 Aug; 103(9):097001. PubMed ID: 19792819 [TBL] [Abstract][Full Text] [Related]
2. Fermi surface topology of Ca1.5Sr0.5RuO4 determined by angle-resolved photoelectron spectroscopy. Wang SC; Yang HB; Sekharan AK; Souma S; Matsui H; Sato T; Takahashi T; Lu C; Zhang J; Jin R; Mandrus D; Plummer EW; Wang Z; Ding H Phys Rev Lett; 2004 Oct; 93(17):177007. PubMed ID: 15525117 [TBL] [Abstract][Full Text] [Related]
3. Observation of temperature-induced crossover to an orbital-selective Mott phase in A(x)Fe(2-y)Se2 (A=K, Rb) superconductors. Yi M; Lu DH; Yu R; Riggs SC; Chu JH; Lv B; Liu ZK; Lu M; Cui YT; Hashimoto M; Mo SK; Hussain Z; Chu CW; Fisher IR; Si Q; Shen ZX Phys Rev Lett; 2013 Feb; 110(6):067003. PubMed ID: 23432294 [TBL] [Abstract][Full Text] [Related]
4. Subband filling and Mott transition in Ca2-xSrxRuO4. Liebsch A; Ishida H Phys Rev Lett; 2007 May; 98(21):216403. PubMed ID: 17677792 [TBL] [Abstract][Full Text] [Related]
5. Orbital-Dependent Band Narrowing Revealed in an Extremely Correlated Hund's Metal Emerging on the Topmost Layer of Sr_{2}RuO_{4}. Kondo T; Ochi M; Nakayama M; Taniguchi H; Akebi S; Kuroda K; Arita M; Sakai S; Namatame H; Taniguchi M; Maeno Y; Arita R; Shin S Phys Rev Lett; 2016 Dec; 117(24):247001. PubMed ID: 28009182 [TBL] [Abstract][Full Text] [Related]
8. Missing xy-band Fermi surface in 4d transition-metal oxide Sr2RhO4: effect of the octahedra rotation on the electronic structure. Kim BJ; Yu J; Koh H; Nagai I; Ikeda SI; Oh SJ; Kim C Phys Rev Lett; 2006 Sep; 97(10):106401. PubMed ID: 17025832 [TBL] [Abstract][Full Text] [Related]
9. Ferro-type orbital state in the Mott transition system Ca2-xSrxRuO4 studied by the resonant x-ray scattering interference technique. Kubota M; Murakami Y; Mizumaki M; Ohsumi H; Ikeda N; Nakatsuji S; Fukazawa H; Maeno Y Phys Rev Lett; 2005 Jul; 95(2):026401. PubMed ID: 16090704 [TBL] [Abstract][Full Text] [Related]
10. Observation of Mott instability at the valence transition of Yang H; Gao J; Cao Y; Xu Y; Liang A; Xu X; Chen Y; Liu S; Huang K; Xu L; Wang C; Cui S; Wang M; Yang L; Luo X; Sun Y; Yang YF; Liu Z; Chen Y Natl Sci Rev; 2023 Jun; 10(6):nwad035. PubMed ID: 37484834 [TBL] [Abstract][Full Text] [Related]
11. Spectroscopic signatures of a bandwidth-controlled Mott transition at the surface of 1T-TaSe2. Perfetti L; Georges A; Florens S; Biermann S; Mitrovic S; Berger H; Tomm Y; Höchst H; Grioni M Phys Rev Lett; 2003 Apr; 90(16):166401. PubMed ID: 12731984 [TBL] [Abstract][Full Text] [Related]
12. Photoemission studies of the near EF spectral weight shifts in FeSe1-xTex superconductor. Mishra P; Lohani H; Zargar RA; Awana VP; Sekhar BR J Phys Condens Matter; 2014 Oct; 26(42):425501. PubMed ID: 25273901 [TBL] [Abstract][Full Text] [Related]
13. Site-selective mott transition in a quasi-one-dimensional vanadate V6O13. Shimizu Y; Aoyama S; Jinno T; Itoh M; Ueda Y Phys Rev Lett; 2015 Apr; 114(16):166403. PubMed ID: 25955061 [TBL] [Abstract][Full Text] [Related]
14. Observation of universal strong orbital-dependent correlation effects in iron chalcogenides. Yi M; Liu ZK; Zhang Y; Yu R; Zhu JX; Lee JJ; Moore RG; Schmitt FT; Li W; Riggs SC; Chu JH; Lv B; Hu J; Hashimoto M; Mo SK; Hussain Z; Mao ZQ; Chu CW; Fisher IR; Si Q; Shen ZX; Lu DH Nat Commun; 2015 Jul; 6():7777. PubMed ID: 26204461 [TBL] [Abstract][Full Text] [Related]
15. Orbital-selective Mott transition out of band degeneracy lifting. de' Medici L; Hassan SR; Capone M; Dai X Phys Rev Lett; 2009 Mar; 102(12):126401. PubMed ID: 19392299 [TBL] [Abstract][Full Text] [Related]
16. Calculation Evidence of Staged Mott and Peierls Transitions in VO2 Revealed by Mapping Reduced-Dimension Potential Energy Surface. Chen S; Liu J; Luo H; Gao Y J Phys Chem Lett; 2015 Sep; 6(18):3650-6. PubMed ID: 26722737 [TBL] [Abstract][Full Text] [Related]
17. Tuning orbital-selective phase transitions in a two-dimensional Hund's correlated system. Ko EK; Hahn S; Sohn C; Lee S; Lee SB; Sohn B; Kim JR; Son J; Song J; Kim Y; Kim D; Kim M; Kim CH; Kim C; Noh TW Nat Commun; 2023 Jun; 14(1):3572. PubMed ID: 37328474 [TBL] [Abstract][Full Text] [Related]
18. Prediction of orbital ordering in single-layered ruthenates. Hotta T; Dagotto E Phys Rev Lett; 2002 Jan; 88(1):017201. PubMed ID: 11800983 [TBL] [Abstract][Full Text] [Related]
19. Orbital dependence of the fermi liquid state in Sr2RuO4. Kidd TE; Valla T; Fedorov AV; Johnson PD; Cava RJ; Haas MK Phys Rev Lett; 2005 Mar; 94(10):107003. PubMed ID: 15783507 [TBL] [Abstract][Full Text] [Related]
20. Nature of the Mott transition in Ca2RuO4. Gorelov E; Karolak M; Wehling TO; Lechermann F; Lichtenstein AI; Pavarini E Phys Rev Lett; 2010 Jun; 104(22):226401. PubMed ID: 20867184 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]