BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 19793099)

  • 1. Novel role for ß-adrenergic signalling in skeletal muscle growth, development and regeneration.
    Ryall JG; Church JE; Lynch GS
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):397-401. PubMed ID: 19793099
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of beta-adrenoceptor signaling in skeletal muscle: implications for muscle wasting and disease.
    Lynch GS; Ryall JG
    Physiol Rev; 2008 Apr; 88(2):729-67. PubMed ID: 18391178
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of beta-adrenoceptor signaling in skeletal muscle: therapeutic implications for muscle wasting disorders.
    Koopman R; Ryall JG; Church JE; Lynch GS
    Curr Opin Clin Nutr Metab Care; 2009 Nov; 12(6):601-6. PubMed ID: 19741516
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Type I insulin-like growth factor receptor signaling in skeletal muscle regeneration and hypertrophy.
    Philippou A; Halapas A; Maridaki M; Koutsilieris M
    J Musculoskelet Neuronal Interact; 2007; 7(3):208-18. PubMed ID: 17947802
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Waste management - cytokines, growth factors and cachexia.
    Saini A; Al-Shanti N; Stewart CE
    Cytokine Growth Factor Rev; 2006 Dec; 17(6):475-86. PubMed ID: 17118696
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prolonged absence of myostatin reduces sarcopenia.
    Siriett V; Platt L; Salerno MS; Ling N; Kambadur R; Sharma M
    J Cell Physiol; 2006 Dec; 209(3):866-73. PubMed ID: 16972257
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle: increasing the size of the locomotor cell.
    Karagounis LG; Hawley JA
    Int J Biochem Cell Biol; 2010 Sep; 42(9):1376-9. PubMed ID: 20541033
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Notch pathway: from development to regeneration of skeletal muscle].
    Mayeuf A; Relaix F
    Med Sci (Paris); 2011 May; 27(5):521-6. PubMed ID: 21609674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cellular and molecular regulation of muscle regeneration.
    Chargé SB; Rudnicki MA
    Physiol Rev; 2004 Jan; 84(1):209-38. PubMed ID: 14715915
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mighty is a novel promyogenic factor in skeletal myogenesis.
    Marshall A; Salerno MS; Thomas M; Davies T; Berry C; Dyer K; Bracegirdle J; Watson T; Dziadek M; Kambadur R; Bower R; Sharma M
    Exp Cell Res; 2008 Mar; 314(5):1013-29. PubMed ID: 18255059
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Embryonic myogenesis pathways in muscle regeneration.
    Zhao P; Hoffman EP
    Dev Dyn; 2004 Feb; 229(2):380-92. PubMed ID: 14745964
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The potential and the pitfalls of beta-adrenoceptor agonists for the management of skeletal muscle wasting.
    Ryall JG; Lynch GS
    Pharmacol Ther; 2008 Dec; 120(3):219-32. PubMed ID: 18834902
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insulin-like growth factors (IGFs), IGF receptors, and IGF-binding proteins: roles in skeletal muscle growth and differentiation.
    Duan C; Ren H; Gao S
    Gen Comp Endocrinol; 2010 Jul; 167(3):344-51. PubMed ID: 20403355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca2+/calmodulin-dependent transcriptional pathways: potential mediators of skeletal muscle growth and development.
    Al-Shanti N; Stewart CE
    Biol Rev Camb Philos Soc; 2009 Nov; 84(4):637-52. PubMed ID: 19725819
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Signalling and the control of skeletal muscle size.
    Otto A; Patel K
    Exp Cell Res; 2010 Nov; 316(18):3059-66. PubMed ID: 20406633
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tumor necrosis factor-alpha inhibition of skeletal muscle regeneration is mediated by a caspase-dependent stem cell response.
    Moresi V; Pristerà A; Scicchitano BM; Molinaro M; Teodori L; Sassoon D; Adamo S; Coletti D
    Stem Cells; 2008 Apr; 26(4):997-1008. PubMed ID: 18258721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of cellular mechanisms to growth and development of food producing animals.
    Chung KY; Johnson BJ
    J Anim Sci; 2008 Apr; 86(14 Suppl):E226-35. PubMed ID: 17965330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Insulin-like growth factor-I-coupled mitogenic signaling in primary cultured human skeletal muscle cells and in C2C12 myoblasts. A central role of protein kinase Cdelta.
    Czifra G; Tóth IB; Marincsák R; Juhász I; Kovács I; Acs P; Kovács L; Blumberg PM; Bíró T
    Cell Signal; 2006 Sep; 18(9):1461-72. PubMed ID: 16403461
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of IGF-I in skeletal muscle mass maintenance.
    Clemmons DR
    Trends Endocrinol Metab; 2009 Sep; 20(7):349-56. PubMed ID: 19729319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of satellite cells in muscle growth and maintenance of muscle mass.
    Pallafacchina G; Blaauw B; Schiaffino S
    Nutr Metab Cardiovasc Dis; 2013 Dec; 23 Suppl 1():S12-8. PubMed ID: 22621743
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.