BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

85 related articles for article (PubMed ID: 19793100)

  • 1. Histone modifications and skeletal muscle metabolic gene expression.
    McGee SL; Hargreaves M
    Clin Exp Pharmacol Physiol; 2010 Mar; 37(3):392-6. PubMed ID: 19793100
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Influence of AMP-activated protein kinase and calcineurin on metabolic networks in skeletal muscle.
    Long YC; Zierath JR
    Am J Physiol Endocrinol Metab; 2008 Sep; 295(3):E545-52. PubMed ID: 18544643
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exercise and skeletal muscle glucose transporter 4 expression: molecular mechanisms.
    McGee SL; Hargreaves M
    Clin Exp Pharmacol Physiol; 2006 Apr; 33(4):395-9. PubMed ID: 16620308
    [TBL] [Abstract][Full Text] [Related]  

  • 4. AMPK-mediated regulation of transcription in skeletal muscle.
    McGee SL; Hargreaves M
    Clin Sci (Lond); 2010 Jan; 118(8):507-18. PubMed ID: 20088830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dual regulation of the AMP-activated protein kinase provides a novel mechanism for the control of creatine kinase in skeletal muscle.
    Ponticos M; Lu QL; Morgan JE; Hardie DG; Partridge TA; Carling D
    EMBO J; 1998 Mar; 17(6):1688-99. PubMed ID: 9501090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic and metabolic effects on skeletal muscle AMPK in young and older twins.
    Mortensen B; Poulsen P; Wegner L; Stender-Petersen KL; Ribel-Madsen R; Friedrichsen M; Birk JB; Vaag A; Wojtaszewski JF
    Am J Physiol Endocrinol Metab; 2009 Oct; 297(4):E956-64. PubMed ID: 19671840
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of the atypical protein kinase Czeta in regulation of 5'-AMP-activated protein kinase in cardiac and skeletal muscle.
    Ussher JR; Jaswal JS; Wagg CS; Armstrong HE; Lopaschuk DG; Keung W; Lopaschuk GD
    Am J Physiol Endocrinol Metab; 2009 Aug; 297(2):E349-57. PubMed ID: 19625676
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcription regulation by histone deacetylases.
    Wang S; Yan-Neale Y; Zeremski M; Cohen D
    Novartis Found Symp; 2004; 259():238-45; discussion 245-8, 285-8. PubMed ID: 15171258
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Skeletal muscle and nuclear hormone receptors: implications for cardiovascular and metabolic disease.
    Smith AG; Muscat GE
    Int J Biochem Cell Biol; 2005 Oct; 37(10):2047-63. PubMed ID: 15922648
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CaM kinase II selectively signals to histone deacetylase 4 during cardiomyocyte hypertrophy.
    Backs J; Song K; Bezprozvannaya S; Chang S; Olson EN
    J Clin Invest; 2006 Jul; 116(7):1853-64. PubMed ID: 16767219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histone modifications and exercise adaptations.
    McGee SL; Hargreaves M
    J Appl Physiol (1985); 2011 Jan; 110(1):258-63. PubMed ID: 21030677
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exercise-induced histone modifications in human skeletal muscle.
    McGee SL; Fairlie E; Garnham AP; Hargreaves M
    J Physiol; 2009 Dec; 587(Pt 24):5951-8. PubMed ID: 19884317
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone deacetylase 9 couples neuronal activity to muscle chromatin acetylation and gene expression.
    Méjat A; Ramond F; Bassel-Duby R; Khochbin S; Olson EN; Schaeffer L
    Nat Neurosci; 2005 Mar; 8(3):313-21. PubMed ID: 15711539
    [TBL] [Abstract][Full Text] [Related]  

  • 14. D-Serine exposure resulted in gene expression changes indicative of activation of fibrogenic pathways and down-regulation of energy metabolism and oxidative stress response.
    Soto A; DelRaso NJ; Schlager JJ; Chan VT
    Toxicology; 2008 Jan; 243(1-2):177-92. PubMed ID: 18061331
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of histone deacetylase activities.
    Sengupta N; Seto E
    J Cell Biochem; 2004 Sep; 93(1):57-67. PubMed ID: 15352162
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men.
    Sjögren K; Leung KC; Kaplan W; Gardiner-Garden M; Gibney J; Ho KK
    Am J Physiol Endocrinol Metab; 2007 Jul; 293(1):E364-71. PubMed ID: 17456639
    [TBL] [Abstract][Full Text] [Related]  

  • 17. HDACs in skeletal muscle remodeling and neuromuscular disease.
    Simmons BJ; Cohen TJ; Bedlack R; Yao TP
    Handb Exp Pharmacol; 2011; 206():79-101. PubMed ID: 21879447
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Histone Deacetylases as Modulators of the Crosstalk Between Skeletal Muscle and Other Organs.
    Renzini A; D'Onghia M; Coletti D; Moresi V
    Front Physiol; 2022; 13():706003. PubMed ID: 35250605
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of Histone Deacetylases in Skeletal Muscle Physiology and Systemic Energy Homeostasis: Implications for Metabolic Diseases and Therapy.
    Tian H; Liu S; Ren J; Lee JKW; Wang R; Chen P
    Front Physiol; 2020; 11():949. PubMed ID: 32848876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Class IIa HDACs inhibit cell death pathways and protect muscle integrity in response to lipotoxicity.
    Martin SD; Connor T; Sanigorski A; McEwen KA; Henstridge DC; Nijagal B; De Souza D; Tull DL; Meikle PJ; Kowalski GM; Bruce CR; Gregorevic P; Febbraio MA; Collier FM; Walder KR; McGee SL
    Cell Death Dis; 2023 Dec; 14(12):787. PubMed ID: 38040704
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.