BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 19793443)

  • 1. Zwitterionic hydrogels: an in vivo implantation study.
    Zhang Z; Chao T; Liu L; Cheng G; Ratner BD; Jiang S
    J Biomater Sci Polym Ed; 2009; 20(13):1845-59. PubMed ID: 19793443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable bioadhesive copolymer hydrogels of thermoresponsive poly(N-isopropyl acrylamide) containing zwitterionic polysulfobetaine.
    Chang Y; Yandi W; Chen WY; Shih YJ; Yang CC; Chang Y; Ling QD; Higuchi A
    Biomacromolecules; 2010 Apr; 11(4):1101-10. PubMed ID: 20201492
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker.
    Carr LR; Xue H; Jiang S
    Biomaterials; 2011 Feb; 32(4):961-8. PubMed ID: 20970184
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media.
    Yang W; Xue H; Carr LR; Wang J; Jiang S
    Biosens Bioelectron; 2011 Jan; 26(5):2454-9. PubMed ID: 21111598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-fouling hydrogels of 2-hydroxyethyl methacrylate and zwitterionic carboxybetaine (meth)acrylamides.
    Kostina NY; Rodriguez-Emmenegger C; Houska M; Brynda E; Michálek J
    Biomacromolecules; 2012 Dec; 13(12):4164-70. PubMed ID: 23157270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides.
    Zhang Z; Chao T; Chen S; Jiang S
    Langmuir; 2006 Nov; 22(24):10072-7. PubMed ID: 17107002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An in situ poly(carboxybetaine) hydrogel for tissue engineering applications.
    Chien HW; Yu J; Li ST; Chen HY; Tsai WB
    Biomater Sci; 2017 Jan; 5(2):322-330. PubMed ID: 28050608
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulation of barnacle (Balanus amphitrite Darwin) cyprid settlement behavior by sulfobetaine and carboxybetaine methacrylate polymer coatings.
    Aldred N; Li G; Gao Y; Clare AS; Jiang S
    Biofouling; 2010 Aug; 26(6):673-83. PubMed ID: 20658383
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dual-functional biomimetic materials: nonfouling poly(carboxybetaine) with active functional groups for protein immobilization.
    Zhang Z; Chen S; Jiang S
    Biomacromolecules; 2006 Dec; 7(12):3311-5. PubMed ID: 17154457
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniform zwitterionic polymer hydrogels with a nonfouling and functionalizable crosslinker using photopolymerization.
    Carr LR; Zhou Y; Krause JE; Xue H; Jiang S
    Biomaterials; 2011 Oct; 32(29):6893-9. PubMed ID: 21704366
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Different in vitro and in vivo behaviors between Poly(carboxybetaine methacrylate) and poly(sulfobetaine methacrylate).
    Lin W; Ma G; Wu J; Chen S
    Colloids Surf B Biointerfaces; 2016 Oct; 146():888-94. PubMed ID: 27459415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfated zwitterionic poly(sulfobetaine methacrylate) hydrogels promote complete skin regeneration.
    Wu J; Xiao Z; Chen A; He H; He C; Shuai X; Li X; Chen S; Zhang Y; Ren B; Zheng J; Xiao J
    Acta Biomater; 2018 Apr; 71():293-305. PubMed ID: 29535009
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel hydrogel membrane based on copoly(hydroxyethyl methacrylate/p-vinylbenzyl-poly(ethylene oxide)) for biomedical applications: properties and drug release characteristics.
    Arica MY; Bayramoglu G; Arica B; Yalçin E; Ito K; Yagci Y
    Macromol Biosci; 2005 Oct; 5(10):983-92. PubMed ID: 16208632
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cell responses to biomaterials. I: Adhesion and growth of vascular endothelial cells on poly(hydroxyethyl methacrylate) following surface modification by hydrolytic etching.
    McAuslan BR; Johnson G
    J Biomed Mater Res; 1987 Jul; 21(7):921-35. PubMed ID: 3611147
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biodegradable and pH-sensitive hydrogels for cell encapsulation and controlled drug release.
    Wu DQ; Sun YX; Xu XD; Cheng SX; Zhang XZ; Zhuo RX
    Biomacromolecules; 2008 Apr; 9(4):1155-62. PubMed ID: 18307310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physical, chemical, and chemical-physical double network of zwitterionic hydrogels.
    Zhang Z; Chao T; Jiang S
    J Phys Chem B; 2008 May; 112(17):5327-32. PubMed ID: 18393546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthetic poly(amino acid) hydrogels with incorporated cell-adhesion peptides for tissue engineering.
    Studenovská H; Vodicka P; Proks V; Hlucilová J; Motlík J; Rypácek F
    J Tissue Eng Regen Med; 2010 Aug; 4(6):454-63. PubMed ID: 20084624
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Poly(hydroxyethyl methacrylate)-based co-polymeric hydrogels for transdermal delivery of salbutamol sulphate.
    Suhag GS; Bhatnagar A; Singh H
    J Biomater Sci Polym Ed; 2008; 19(9):1189-200. PubMed ID: 18727860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical characterisation and biological evaluation of hydrogel-poly(epsilon-caprolactone) interpenetrating polymer networks as novel urinary biomaterials.
    Jones DS; McLaughlin DW; McCoy CP; Gorman SP
    Biomaterials; 2005 May; 26(14):1761-70. PubMed ID: 15576150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Methods for the topographical patterning and patterned surface modification of hydrogels based on hydroxyethyl methacrylate.
    Yu T; Ober CK
    Biomacromolecules; 2003; 4(5):1126-31. PubMed ID: 12959574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.