These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 197941)

  • 61. Expression, purification, and characterization of human cAMP-specific phosphodiesterase (PDE4) subtypes A, B, C, and D.
    Wang P; Myers JG; Wu P; Cheewatrakoolpong B; Egan RW; Billah MM
    Biochem Biophys Res Commun; 1997 May; 234(2):320-4. PubMed ID: 9177268
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [Effect of cyclic AMP and theophylline on the permeability of urea across the urinary bladder of Rana esculenta].
    Micelli S; Gallucci E
    Boll Soc Ital Biol Sper; 1977 Jan; 53(1-2):42-5. PubMed ID: 199213
    [No Abstract]   [Full Text] [Related]  

  • 63. Inhibition of neoplastic cell growth by quiescent cells is mediated by serum concentration and cAMP phosphodiesterase inhibitors.
    Bertram JS; Bertram BB; Janik P
    J Cell Biochem; 1982; 18(4):515-38. PubMed ID: 6282911
    [No Abstract]   [Full Text] [Related]  

  • 64. Cardiotonic actions of selective phosphodiesterase inhibitors in rat isolated ventricular cardiomyocytes.
    Kelso EJ; McDermott BJ; Silke B
    Br J Pharmacol; 1993 Dec; 110(4):1387-94. PubMed ID: 8306078
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Inhibition of phosphodiesterase has an additive effect on estrogen's ability to inhibit collagen synthesis in vascular smooth muscle cells.
    Dimopoulos GJ; Langner RO
    Vascul Pharmacol; 2009; 50(1-2):78-82. PubMed ID: 19007913
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Cyclic nucleotide-dependent protein kinase activity in malignant and cyclic AMP-induced "differentiated" neuroblastoma cells in culture.
    Prasad KN; Fogleman D; Gaschler M; Sinha PK; Brown JL
    Biochem Biophys Res Commun; 1976 Feb; 68(4):1248-55. PubMed ID: 178300
    [No Abstract]   [Full Text] [Related]  

  • 67. ELECTRICAL RESPONSES TO ODOURS OF DEGENERATING OLFACOTRY EPITHELIUM.
    TAKAGI SF; YAJIMA T
    Nature; 1964 Jun; 202():1220. PubMed ID: 14217518
    [No Abstract]   [Full Text] [Related]  

  • 68. Zinc modulates the electro-olfactogram of the frog.
    Ishimaru T; Tsukatani T; Miwa T; Furukawa M
    Auris Nasus Larynx; 2000 Jul; 27(3):257-60. PubMed ID: 10808115
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Theophylline induces changes in the electro-olfactogram of the mouse.
    Gudziol V; Pietsch J; Witt M; Hummel T
    Eur Arch Otorhinolaryngol; 2010 Feb; 267(2):239-43. PubMed ID: 19727789
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Ultrastructural and electrophysiological changes in the olfactory epithelium following exposure to organic solvents.
    Ekblom A; Flock A; Hansson P; Ottoson D
    Acta Otolaryngol; 1984; 98(3-4):351-61. PubMed ID: 6333773
    [TBL] [Abstract][Full Text] [Related]  

  • 71. [Action of phosphodiesterase inhibitors on electric discharge of the electroplax isolated from Electrophorus electricus (L.)].
    Chagas C; Esquibel MA; Milhaud G
    C R Acad Hebd Seances Acad Sci D; 1972 Feb; 274(9):1341-4. PubMed ID: 4339889
    [No Abstract]   [Full Text] [Related]  

  • 72. Effect of cyclic AMP, theophylline and caffeine on the glucose repression of sporulation in Saccharomyces cerevisiae.
    Tsuboi M; Yanagishima N
    Arch Mikrobiol; 1973 Oct; 93(1):1-12. PubMed ID: 4358021
    [No Abstract]   [Full Text] [Related]  

  • 73. Qualitative and quantitative discrimination in the frog olfactory receptors: analysis from electrophysiological data.
    Holley A; Duchamp A; Revial MF; Juge A
    Ann N Y Acad Sci; 1974 Sep; 237(0):102-14. PubMed ID: 4529253
    [No Abstract]   [Full Text] [Related]  

  • 74. Olfactory coding on the basis of physicochemical properties.
    Laffort P; Patte F; Etcheto M
    Ann N Y Acad Sci; 1974 Sep; 237(0):193-208. PubMed ID: 4529029
    [No Abstract]   [Full Text] [Related]  

  • 75. Polyadenylic acid-containing cytoplasmic RNA increases in adenosine 3',5'-cyclic monophosphate-induced 'differentiated' neuroblastoma cells in culture.
    Prasad KN; Bondy SC; Purdy JL
    Exp Cell Res; 1975 Aug; 94(1):88-94. PubMed ID: 172339
    [No Abstract]   [Full Text] [Related]  

  • 76. Inhibition of lymphocyte-mediated cytolysis by 2-fluoroadenosine--evidence for two discrete mechanisms of drug action.
    Zimmerman TP; Wolberg G; Duncan GS; Rideout JL; Beacham LM; Krenitsky TA; Elion GB
    Biochem Pharmacol; 1978; 27(13):1731-7. PubMed ID: 213077
    [No Abstract]   [Full Text] [Related]  

  • 77. Inhibition of immune cell function by adenosine: biochemical studies.
    Zimmerman TP; Wolberg G; Duncan GS; Deeprose RD; Harvey RJ
    Adv Exp Med Biol; 1979; 122B():271-6. PubMed ID: 546148
    [No Abstract]   [Full Text] [Related]  

  • 78. Specific alterations in phosphorylation of cytosol proteins from differentiating neuroblastoma cells grown in culture.
    Ehrlich YH; Brunngraber EG; Sinha PK; Prasad KN
    Nature; 1977 Jan; 265(5591):238-40. PubMed ID: 189207
    [No Abstract]   [Full Text] [Related]  

  • 79. Chemical modification of the olfactory epithelium.
    Shirley SG; Polak E; Dodd GH
    Biochem Soc Trans; 1981 Feb; 9(1):108-9. PubMed ID: 7215630
    [No Abstract]   [Full Text] [Related]  

  • 80. Uptake of transferrin-bound zinc by human lymphocytes.
    Phillips JL
    Cell Immunol; 1978 Feb; 35(2):318-29. PubMed ID: 202406
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.