BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

316 related articles for article (PubMed ID: 19794149)

  • 1. mTOR regulates skeletal muscle regeneration in vivo through kinase-dependent and kinase-independent mechanisms.
    Ge Y; Wu AL; Warnes C; Liu J; Zhang C; Kawasome H; Terada N; Boppart MD; Schoenherr CJ; Chen J
    Am J Physiol Cell Physiol; 2009 Dec; 297(6):C1434-44. PubMed ID: 19794149
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Muscle inactivation of mTOR causes metabolic and dystrophin defects leading to severe myopathy.
    Risson V; Mazelin L; Roceri M; Sanchez H; Moncollin V; Corneloup C; Richard-Bulteau H; Vignaud A; Baas D; Defour A; Freyssenet D; Tanti JF; Le-Marchand-Brustel Y; Ferrier B; Conjard-Duplany A; Romanino K; Bauché S; Hantaï D; Mueller M; Kozma SC; Thomas G; Rüegg MA; Ferry A; Pende M; Bigard X; Koulmann N; Schaeffer L; Gangloff YG
    J Cell Biol; 2009 Dec; 187(6):859-74. PubMed ID: 20008564
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The mammalian target of rapamycin regulates C2C12 myogenesis via a kinase-independent mechanism.
    Erbay E; Chen J
    J Biol Chem; 2001 Sep; 276(39):36079-82. PubMed ID: 11500483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Skeletal myocyte hypertrophy requires mTOR kinase activity and S6K1.
    Park IH; Erbay E; Nuzzi P; Chen J
    Exp Cell Res; 2005 Sep; 309(1):211-9. PubMed ID: 15963500
    [TBL] [Abstract][Full Text] [Related]  

  • 5. mTOR is necessary for proper satellite cell activity and skeletal muscle regeneration.
    Zhang P; Liang X; Shan T; Jiang Q; Deng C; Zheng R; Kuang S
    Biochem Biophys Res Commun; 2015 Jul 17-24; 463(1-2):102-8. PubMed ID: 25998386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. S6 kinase inactivation impairs growth and translational target phosphorylation in muscle cells maintaining proper regulation of protein turnover.
    Mieulet V; Roceri M; Espeillac C; Sotiropoulos A; Ohanna M; Oorschot V; Klumperman J; Sandri M; Pende M
    Am J Physiol Cell Physiol; 2007 Aug; 293(2):C712-22. PubMed ID: 17494629
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of skeletal muscle mTOR in the regulation of mechanical load-induced growth.
    Goodman CA; Frey JW; Mabrey DM; Jacobs BL; Lincoln HC; You JS; Hornberger TA
    J Physiol; 2011 Nov; 589(Pt 22):5485-501. PubMed ID: 21946849
    [TBL] [Abstract][Full Text] [Related]  

  • 8. IGF-II is regulated by microRNA-125b in skeletal myogenesis.
    Ge Y; Sun Y; Chen J
    J Cell Biol; 2011 Jan; 192(1):69-81. PubMed ID: 21200031
    [TBL] [Abstract][Full Text] [Related]  

  • 9. S6 kinase 1 is required for rapamycin-sensitive liver proliferation after mouse hepatectomy.
    Espeillac C; Mitchell C; Celton-Morizur S; Chauvin C; Koka V; Gillet C; Albrecht JH; Desdouets C; Pende M
    J Clin Invest; 2011 Jul; 121(7):2821-32. PubMed ID: 21633171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessment of cell-signaling pathways in the regulation of mammalian target of rapamycin (mTOR) by amino acids in rat adipocytes.
    Pham PT; Heydrick SJ; Fox HL; Kimball SR; Jefferson LS; Lynch CJ
    J Cell Biochem; 2000 Sep; 79(3):427-41. PubMed ID: 10972980
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinct amino acid-sensing mTOR pathways regulate skeletal myogenesis.
    Yoon MS; Chen J
    Mol Biol Cell; 2013 Dec; 24(23):3754-63. PubMed ID: 24068326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Leucine restriction inhibits chondrocyte proliferation and differentiation through mechanisms both dependent and independent of mTOR signaling.
    Kim MS; Wu KY; Auyeung V; Chen Q; Gruppuso PA; Phornphutkul C
    Am J Physiol Endocrinol Metab; 2009 Jun; 296(6):E1374-82. PubMed ID: 19401455
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A kinase-dead knock-in mutation in mTOR leads to early embryonic lethality and is dispensable for the immune system in heterozygous mice.
    Shor B; Cavender D; Harris C
    BMC Immunol; 2009 May; 10():28. PubMed ID: 19457267
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Focal adhesion kinase is required for IGF-I-mediated growth of skeletal muscle cells via a TSC2/mTOR/S6K1-associated pathway.
    Crossland H; Kazi AA; Lang CH; Timmons JA; Pierre P; Wilkinson DJ; Smith K; Szewczyk NJ; Atherton PJ
    Am J Physiol Endocrinol Metab; 2013 Jul; 305(2):E183-93. PubMed ID: 23695213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Feeding stimulates protein synthesis in muscle and liver of neonatal pigs through an mTOR-dependent process.
    Kimball SR; Jefferson LS; Nguyen HV; Suryawan A; Bush JA; Davis TA
    Am J Physiol Endocrinol Metab; 2000 Nov; 279(5):E1080-7. PubMed ID: 11052963
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification.
    Pallafacchina G; Calabria E; Serrano AL; Kalhovde JM; Schiaffino S
    Proc Natl Acad Sci U S A; 2002 Jul; 99(14):9213-8. PubMed ID: 12084817
    [TBL] [Abstract][Full Text] [Related]  

  • 17. S6 kinase 1 knockout inhibits uninephrectomy- or diabetes-induced renal hypertrophy.
    Chen JK; Chen J; Thomas G; Kozma SC; Harris RC
    Am J Physiol Renal Physiol; 2009 Sep; 297(3):F585-93. PubMed ID: 19474189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protein kinase C-delta and phosphatidylinositol 3-kinase/Akt activate mammalian target of rapamycin to modulate NF-kappaB activation and intercellular adhesion molecule-1 (ICAM-1) expression in endothelial cells.
    Minhajuddin M; Bijli KM; Fazal F; Sassano A; Nakayama KI; Hay N; Platanias LC; Rahman A
    J Biol Chem; 2009 Feb; 284(7):4052-61. PubMed ID: 19074768
    [TBL] [Abstract][Full Text] [Related]  

  • 19. mTORC1-activated S6K1 phosphorylates Rictor on threonine 1135 and regulates mTORC2 signaling.
    Julien LA; Carriere A; Moreau J; Roux PP
    Mol Cell Biol; 2010 Feb; 30(4):908-21. PubMed ID: 19995915
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The type 1 insulin-like growth factor receptor (IGF-IR) pathway is mandatory for the follistatin-induced skeletal muscle hypertrophy.
    Kalista S; Schakman O; Gilson H; Lause P; Demeulder B; Bertrand L; Pende M; Thissen JP
    Endocrinology; 2012 Jan; 153(1):241-53. PubMed ID: 22087027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.