These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19794604)

  • 1. Efficient generation of blue light by doubly resonant sum-frequency mixing in a monolithic KTP resonator.
    Risk WP; Kozlovsky WJ
    Opt Lett; 1992 May; 17(10):707-9. PubMed ID: 19794604
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Continuous-Wave, All-Solid-State, Single-Frequency 400-mW Source at 589 nm Based on Doubly Resonant Sum-Frequency Mixing in a Monolithic Lithium Niobate Resonator.
    Vance JD; She CY; Moosmüller H
    Appl Opt; 1998 Jul; 37(21):4891-6. PubMed ID: 18285953
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cavity-enhanced sum-frequency generation of blue light with near-unity conversion efficiency.
    Kerdoncuff H; Christensen JB; Brasil TB; Novikov VA; Polzik ES; Hald J; Lassen M
    Opt Express; 2020 Feb; 28(3):3975-3984. PubMed ID: 32122057
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Room-temperature, continuous-wave, 946-nm Nd:YAG laser pumped by laser-diode arrays and intracavity frequency doubling to 473 nm.
    Risk WP; Lenth W
    Opt Lett; 1987 Dec; 12(12):993-5. PubMed ID: 19741939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. All-solid-state continuous-wave doubly resonant all-intracavity sum-frequency mixer.
    Kretschmann HM; Heine F; Huber G; Halldórsson T
    Opt Lett; 1997 Oct; 22(19):1461-3. PubMed ID: 18188268
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Efficient visible light generation by mixing of a solid-state laser and a tapered diode laser.
    Karamehmedovic E; Pedersen C; Andersen MT; Tidemand-Lichtenberg P
    Opt Express; 2007 Sep; 15(19):12240-5. PubMed ID: 19547591
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Monolithic MgO:LiNbO(3) doubly resonant optical parametric oscillator pumped by a frequency-doubled diode-laser-pumped Nd:YAG laser.
    Kozlovsky WJ; Nabors CD; Eckardt RC; Byer RL
    Opt Lett; 1989 Jan; 14(1):66-8. PubMed ID: 19749825
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient intracavity sum-frequency generation of 490-nm radiation by use of potassium niobate.
    Shichijyo S; Yamada K; Muro K
    Opt Lett; 1994 Jul; 19(14):1022-4. PubMed ID: 19844520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient, single-axial-mode operation of a monolithic MgO:LiNbO(3) optical parametric oscillator.
    Nabors CD; Eckardt RC; Kozlovsky WJ; Byer RL
    Opt Lett; 1989 Oct; 14(20):1134-6. PubMed ID: 19753079
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient second-harmonic conversion of cw single-frequency Nd:YAG laser light by frequency locking to a monolithic ring frequency doubler.
    Gerstenberger DC; Tye GE; Wallace RW
    Opt Lett; 1991 Jul; 16(13):992-4. PubMed ID: 19776853
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of all-solid-state, high-power continuous-wave 213-nm light based on sum-frequency mixing in CsLiB6O10.
    Sakuma J; Asakawa Y; Imahoko T; Obara M
    Opt Lett; 2004 May; 29(10):1096-8. PubMed ID: 15181997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-peak-power 786 nm and 452 nm lasers based on 1064 nm intracavity-driven cascaded nonlinear optical frequency conversion.
    Chen H; Huang H; Wu F; Wang F; Shen D
    Opt Express; 2020 Oct; 28(21):30726-30735. PubMed ID: 33115067
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tunable green laser source based on frequency mixing of pump and laser radiation from a Nd:YVO4 crystal operating at 1342 nm with an intracavity KTP crystal.
    Jaque D; Romero JJ; Huang Y; Du Luo Z
    Appl Opt; 2002 Oct; 41(30):6394-8. PubMed ID: 12396191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-watt power blue light generation by intracavity sum- frequency-mixing in KTiOPO4 crystal.
    Haiyong Z; Ge Z; Chenghui H; Yong W; Lingxiong H; Zhenqiang C
    Opt Express; 2008 Mar; 16(5):2989-94. PubMed ID: 18542384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical treatment, simulation, and experiments of doubly resonant sum-frequency mixing in an external resonator.
    Kaneda Y; Kubota S
    Appl Opt; 1997 Oct; 36(30):7766-75. PubMed ID: 18264298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient generation of coherent blue light at 440 nm by intracavity-frequency-tripling 1319-nm emission from a Nd:YAG laser.
    Mu X; Ding YJ
    Opt Lett; 2005 Jun; 30(11):1372-4. PubMed ID: 15981537
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Second-harmonic generation of a continuous-wave diode-pumped Nd:YAG laser using an externally resonant cavity.
    Kozlovsky WJ; Nabors CD; Byer RL
    Opt Lett; 1987 Dec; 12(12):1014-6. PubMed ID: 19741946
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-power single-mode diode-pumped Nd:YAG laser using a monolithic nonplanar ring resonator.
    Cheng EA; Kane TJ
    Opt Lett; 1991 Apr; 16(7):478-80. PubMed ID: 19773972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Efficient monolithic MgO:LiNbO(3) singly resonant optical parametric oscillator.
    Kozlovsky WJ; Gustafson EK; Eckardt RC; Byer RL
    Opt Lett; 1988 Dec; 13(12):1102-4. PubMed ID: 19746138
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of turquoise light by sum frequency mixing of a diode-pumped solid-state laser and a laser diode in periodically poled KTP.
    Johansson S; Spiekermann S; Wang S; Pasiskevicius V; Laurell F; Ekvall K
    Opt Express; 2004 Oct; 12(20):4935-40. PubMed ID: 19484048
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.