BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 19794764)

  • 1. Controlling photon absorption in photonic nanowires via dipole-dipole interaction.
    Singh MR
    Opt Lett; 2009 Oct; 34(19):2909-11. PubMed ID: 19794764
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals.
    Lodahl P; Floris Van Driel A; Nikolaev IS; Irman A; Overgaag K; Vanmaekelbergh D; Vos WL
    Nature; 2004 Aug; 430(7000):654-7. PubMed ID: 15295594
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhancement of the second-harmonic generation in a quantum dot-metallic nanoparticle hybrid system.
    Singh MR
    Nanotechnology; 2013 Mar; 24(12):125701. PubMed ID: 23459222
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Switching in polaritonic-photonic crystal nanofibers doped with quantum dots.
    Cox JD; Singh MR; Racknor C; Agarwal R
    Nano Lett; 2011 Dec; 11(12):5284-9. PubMed ID: 22040384
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Generation of single optical plasmons in metallic nanowires coupled to quantum dots.
    Akimov AV; Mukherjee A; Yu CL; Chang DE; Zibrov AS; Hemmer PR; Park H; Lukin MD
    Nature; 2007 Nov; 450(7168):402-6. PubMed ID: 18004381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Infrared switching from resonant to passive photonic bandgaps: transition from purely photonic to hybrid electronic/photonic systems.
    Sadeghi SM; Li W
    J Phys Condens Matter; 2009 Apr; 21(15):155801. PubMed ID: 21825372
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Climbing the Jaynes-Cummings ladder and observing its nonlinearity in a cavity QED system.
    Fink JM; Göppl M; Baur M; Bianchetti R; Leek PJ; Blais A; Wallraff A
    Nature; 2008 Jul; 454(7202):315-8. PubMed ID: 18633413
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlling cavity reflectivity with a single quantum dot.
    Englund D; Faraon A; Fushman I; Stoltz N; Petroff P; Vucković J
    Nature; 2007 Dec; 450(7171):857-61. PubMed ID: 18064008
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced fluorescence emission from quantum dots on a photonic crystal surface.
    Ganesh N; Zhang W; Mathias PC; Chow E; Soares JA; Malyarchuk V; Smith AD; Cunningham BT
    Nat Nanotechnol; 2007 Aug; 2(8):515-20. PubMed ID: 18654350
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A study of energy absorption rate in a quantum dot and metallic nanosphere hybrid system.
    Schindel D; Singh MR
    J Phys Condens Matter; 2015 Sep; 27(34):345301. PubMed ID: 26252228
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the effect of a radiation field in modifying the intermolecular interaction between two chiral molecules.
    Salam A
    J Chem Phys; 2006 Jan; 124(1):14302. PubMed ID: 16409031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Three-photon-induced four-photon absorption and nonlinear refraction in ZnO quantum dots.
    Chattopadhyay M; Kumbhakar P; Tiwary CS; Mitra AK; Chatterjee U; Kobayashi T
    Opt Lett; 2009 Dec; 34(23):3644-6. PubMed ID: 19953148
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tuning quantum-dot based photonic devices with liquid crystals.
    Piegdon KA; Declair S; Förstner J; Meier T; Matthias H; Urbanski M; Kitzerow HS; Reuter D; Wieck AD; Lorke A; Meier C
    Opt Express; 2010 Apr; 18(8):7946-54. PubMed ID: 20588637
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles.
    Shalom M; Rühle S; Hod I; Yahav S; Zaban A
    J Am Chem Soc; 2009 Jul; 131(29):9876-7. PubMed ID: 19583203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photonic crystal nanocavity laser with a single quantum dot gain.
    Nomura M; Kumagai N; Iwamoto S; Ota Y; Arakawa Y
    Opt Express; 2009 Aug; 17(18):15975-82. PubMed ID: 19724596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modified spontaneous emission and qubit entanglement from dipole-coupled quantum dots in a photonic crystal nanocavity.
    Hughes S
    Phys Rev Lett; 2005 Jun; 94(22):227402. PubMed ID: 16090437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Study of Quantum Interference in Metallic Photonic Crystals Doped with Four-Level Quantum Dots.
    Hatef A; Singh M
    Nanoscale Res Lett; 2010 Jan; 5(3):464-468. PubMed ID: 20672084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy of charged states in the acetanilide crystal: trapping of charge-transfer states at vacancies as a possible mechanism for optical damage.
    Tsiaousis D; Munn RW
    J Chem Phys; 2004 Apr; 120(15):7095-106. PubMed ID: 15267613
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A study of two-photon florescence in metallic nanoshells.
    Singh MR; Persaud PD; Yastrebov S
    Nanotechnology; 2020 Apr; 31(26):265203. PubMed ID: 32197263
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantum nature of a strongly coupled single quantum dot-cavity system.
    Hennessy K; Badolato A; Winger M; Gerace D; Atatüre M; Gulde S; Fält S; Hu EL; Imamoğlu A
    Nature; 2007 Feb; 445(7130):896-9. PubMed ID: 17259971
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.