These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

247 related articles for article (PubMed ID: 19794765)

  • 1. Shot-noise-limited laser power stabilization with a high-power photodiode array.
    Kwee P; Willke B; Danzmann K
    Opt Lett; 2009 Oct; 34(19):2912-4. PubMed ID: 19794765
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stabilized high-power laser system for the gravitational wave detector advanced LIGO.
    Kwee P; Bogan C; Danzmann K; Frede M; Kim H; King P; Pöld J; Puncken O; Savage RL; Seifert F; Wessels P; Winkelmann L; Willke B
    Opt Express; 2012 May; 20(10):10617-34. PubMed ID: 22565688
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laser power stabilization for second-generation gravitational wave detectors.
    Seifert F; Kwee P; Heurs M; Willke B; Danzmann K
    Opt Lett; 2006 Jul; 31(13):2000-2. PubMed ID: 16770412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wideband and high-gain frequency stabilization of a 100-W injection-locked Nd:YAG laser for second-generation gravitational wave detectors.
    Ohmae N; Moriwaki S; Mio N
    Rev Sci Instrum; 2010 Jul; 81(7):073105. PubMed ID: 20687703
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A fiber-optic interferometer with subpicometer resolution for dc and low-frequency displacement measurement.
    Smith DT; Pratt JR; Howard LP
    Rev Sci Instrum; 2009 Mar; 80(3):035105. PubMed ID: 19334950
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Laser output power stabilization for direct laser writing system by using an acousto-optic modulator.
    Kim DI; Rhee HG; Song JB; Lee YW
    Rev Sci Instrum; 2007 Oct; 78(10):103110. PubMed ID: 17979409
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shot-noise-limited laser power stabilization for the AEI 10  m Prototype interferometer.
    Junker J; Oppermann P; Willke B
    Opt Lett; 2017 Feb; 42(4):755-758. PubMed ID: 28198864
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Laser power stabilization using optical ac coupling and its quantum and technical limits.
    Kwee P; Willke B; Danzmann K
    Appl Opt; 2009 Oct; 48(28):5423-31. PubMed ID: 19798384
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wideband and high frequency stabilization of an injection-locked Nd:YAG laser to a high-finesse Fabry Perot cavity.
    Musha M; Nakagawa K; Ueda K
    Opt Lett; 1997 Aug; 22(15):1177-9. PubMed ID: 18185787
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-power and near-shot-noise-limited intensity noise all-fiber single-frequency 1.5 μm MOPA laser.
    Yang C; Guan X; Zhao Q; Wu B; Feng Z; Gan J; Cheng H; Peng M; Yang Z; Xu S
    Opt Express; 2017 Jun; 25(12):13324-13331. PubMed ID: 28788868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gravitational wave detection using laser interferometry beyond the standard quantum limit.
    Heurs M
    Philos Trans A Math Phys Eng Sci; 2018 May; 376(2120):. PubMed ID: 29661977
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-noise transimpedance amplifier for the detection of "Violin-Mode" resonances in Advanced Laser Interferometer Gravitational wave Observatory suspensions.
    Lockerbie NA; Tokmakov KV
    Rev Sci Instrum; 2014 Nov; 85(11):114705. PubMed ID: 25430131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Angular instability due to radiation pressure in the LIGO gravitational-wave detector.
    Hirose E; Kawabe K; Sigg D; Adhikari R; Saulson PR
    Appl Opt; 2010 Jun; 49(18):3474-84. PubMed ID: 20563200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Developing an optical chopper-modulated capacitive probe for measuring surface charge.
    Ugolini D; McKinney R; Harry GM
    Rev Sci Instrum; 2007 Apr; 78(4):046102. PubMed ID: 17477693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Passive laser power stabilization via an optical spring.
    Cullen T; Aronson S; Pagano R; Trad Nery M; Cain H; Cripe J; Cole GD; Sharifi S; Aggarwal N; Willke B; Corbitt T
    Opt Lett; 2022 Jun; 47(11):2746-2749. PubMed ID: 35648920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Twin mirrors for laser interferometric gravitational-wave detectors.
    Sassolas B; Benoît Q; Flaminio R; Forest D; Franc J; Galimberti M; Lacoudre A; Michel C; Montorio JL; Morgado N; Pinard L
    Appl Opt; 2011 May; 50(13):1894-9. PubMed ID: 21532671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser power noise detection at the quantum-noise limit of 32 A photocurrent.
    Kwee P; Willke B; Danzmann K
    Opt Lett; 2011 Sep; 36(18):3563-5. PubMed ID: 21931391
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Amplitude and frequency stability of a diode-pumped Nd:YAG laser operating at a single-frequency continuous-wave output power of 20 W.
    Freitag I; Golla D; Knoke S; Schöne W; Zellmer H; Tünnermann A; Welling H
    Opt Lett; 1995 Mar; 20(5):462-4. PubMed ID: 19859221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. FM-eliminated C2H2 frequency-stabilized laser diode with an RIN of -135 dB/Hz and a linewidth of 4 kHz.
    Kasai K; Nakazawa M
    Opt Lett; 2009 Jul; 34(14):2225-7. PubMed ID: 19823556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Use of the application of heterodyne laser interferometer in power ultrasonics.
    Bartáková Z; Bálek R
    Ultrasonics; 2006 Dec; 44 Suppl 1():e1567-70. PubMed ID: 16806363
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.