These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 19794782)

  • 41. Simplified approach to diffraction tomography in optical microscopy.
    Fiolka R; Wicker K; Heintzmann R; Stemmer A
    Opt Express; 2009 Jul; 17(15):12407-17. PubMed ID: 19654642
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Co-registered optical coherence tomography and fluorescence molecular imaging for simultaneous morphological and molecular imaging.
    Yuan S; Roney CA; Wierwille J; Chen CW; Xu B; Griffiths G; Jiang J; Ma H; Cable A; Summers RM; Chen Y
    Phys Med Biol; 2010 Jan; 55(1):191-206. PubMed ID: 20009192
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Quantification of a three-dimensional velocity vector using spectral-domain Doppler optical coherence tomography.
    Ahn YC; Jung W; Chen Z
    Opt Lett; 2007 Jun; 32(11):1587-9. PubMed ID: 17546197
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Single camera spectral domain polarization-sensitive optical coherence tomography using offset B-scan modulation.
    Fan C; Yao G
    Opt Express; 2010 Mar; 18(7):7281-7. PubMed ID: 20389749
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adaptive beamforming for photoacoustic imaging.
    Park S; Karpiouk AB; Aglyamov SR; Emelianov SY
    Opt Lett; 2008 Jun; 33(12):1291-3. PubMed ID: 18552935
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Contrast Agent Enhanced Multimodal Photoacoustic Microscopy and Optical Coherence Tomography for Imaging of Rabbit Choroidal and Retinal Vessels in vivo.
    Nguyen VP; Li Y; Qian W; Liu B; Tian C; Zhang W; Huang Z; Ponduri A; Tarnowski M; Wang X; Paulus YM
    Sci Rep; 2019 Apr; 9(1):5945. PubMed ID: 30976009
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Three-dimensional imaging of normal skin and nonmelanoma skin cancer with cellular resolution using Gabor domain optical coherence microscopy.
    Lee KS; Zhao H; Ibrahim SF; Meemon N; Khoudeir L; Rolland JP
    J Biomed Opt; 2012 Dec; 17(12):126006. PubMed ID: 23208217
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Single-shot two-dimensional full-range optical coherence tomography achieved by dispersion control.
    Witte S; Baclayon M; Peterman EJ; Toonen RF; Mansvelder HD; Groot ML
    Opt Express; 2009 Jul; 17(14):11335-49. PubMed ID: 19582048
    [TBL] [Abstract][Full Text] [Related]  

  • 49. In-vivo functional and structural retinal imaging using multiwavelength photoacoustic remote sensing microscopy.
    Hosseinaee Z; Pellegrino N; Abbasi N; Amiri T; Simmons JAT; Fieguth P; Haji Reza P
    Sci Rep; 2022 Mar; 12(1):4562. PubMed ID: 35296738
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Tomographic imaging of absolute optical absorption coefficient in turbid media using combined photoacoustic and diffusing light measurements.
    Yin L; Wang Q; Zhang Q; Jiang H
    Opt Lett; 2007 Sep; 32(17):2556-8. PubMed ID: 17767303
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Integrated photoacoustic ophthalmoscopy and spectral-domain optical coherence tomography.
    Song W; Wei Q; Jiao S; Zhang HF
    J Vis Exp; 2013 Jan; (71):e4390. PubMed ID: 23354081
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Quantitative spectroscopic photoacoustic imaging: a review.
    Cox B; Laufer JG; Arridge SR; Beard PC
    J Biomed Opt; 2012 Jun; 17(6):061202. PubMed ID: 22734732
    [TBL] [Abstract][Full Text] [Related]  

  • 53. High-spatial-resolution deep tissue imaging with spectral-domain optical coherence microscopy in the 1700-nm spectral band.
    Yamanaka M; Hayakawa N; Nishizawa N
    J Biomed Opt; 2019 Jul; 24(7):1-4. PubMed ID: 31364330
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reflection-mode optical-resolution photoacoustic microscopy based on a reflective objective.
    Wang H; Yang X; Liu Y; Jiang B; Luo Q
    Opt Express; 2013 Oct; 21(20):24210-8. PubMed ID: 24104331
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Dual modality reflection mode optical coherence and photoacoustic microscopy using an akinetic sensor.
    Haindl R; Preisser S; Andreana M; Rohringer W; Sturtzel C; Distel M; Chen Z; Rank E; Fischer B; Drexler W; Liu M
    Opt Lett; 2017 Nov; 42(21):4319-4322. PubMed ID: 29088153
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Inverse scattering for high-resolution interferometric microscopy.
    Ralston TS; Marks DL; Boppart SA; Carney PS
    Opt Lett; 2006 Dec; 31(24):3585-7. PubMed ID: 17130911
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Photoacoustic technique for assessing optical scattering properties of turbid media.
    Ranasinghesagara JC; Jian Y; Chen X; Mathewson K; Zemp RJ
    J Biomed Opt; 2009; 14(4):040504. PubMed ID: 19725709
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Double-reflection polygon mirror for high-speed optical coherence microscopy.
    Liu L; Chen N; Sheppard CJ
    Opt Lett; 2007 Dec; 32(24):3528-30. PubMed ID: 18087531
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography.
    An L; Wang RK
    Opt Express; 2008 Jul; 16(15):11438-52. PubMed ID: 18648464
    [TBL] [Abstract][Full Text] [Related]  

  • 60. In vivo dynamic process imaging using real-time optical-resolution photoacoustic microscopy.
    Shi W; Shao P; Hajireza P; Forbrich A; Zemp RJ
    J Biomed Opt; 2013 Feb; 18(2):26001. PubMed ID: 23377002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.