BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

313 related articles for article (PubMed ID: 19794960)

  • 1. A nonhomologous end-joining pathway is required for protein phosphatase 2A promotion of DNA double-strand break repair.
    Wang Q; Gao F; Wang T; Flagg T; Deng X
    Neoplasia; 2009 Oct; 11(10):1012-21. PubMed ID: 19794960
    [TBL] [Abstract][Full Text] [Related]  

  • 2. c-Myc suppression of DNA double-strand break repair.
    Li Z; Owonikoko TK; Sun SY; Ramalingam SS; Doetsch PW; Xiao ZQ; Khuri FR; Curran WJ; Deng X
    Neoplasia; 2012 Dec; 14(12):1190-202. PubMed ID: 23308051
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The N-terminal region of the DNA-dependent protein kinase catalytic subunit is required for its DNA double-stranded break-mediated activation.
    Davis AJ; Lee KJ; Chen DJ
    J Biol Chem; 2013 Mar; 288(10):7037-46. PubMed ID: 23322783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. DNA-PK-dependent phosphorylation of Ku70/80 is not required for non-homologous end joining.
    Douglas P; Gupta S; Morrice N; Meek K; Lees-Miller SP
    DNA Repair (Amst); 2005 Aug; 4(9):1006-18. PubMed ID: 15941674
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Suppression of nonhomologous end joining repair by overexpression of HMGA2.
    Li AY; Boo LM; Wang SY; Lin HH; Wang CC; Yen Y; Chen BP; Chen DJ; Ann DK
    Cancer Res; 2009 Jul; 69(14):5699-706. PubMed ID: 19549901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inhibiting DNA-PKcs in a non-homologous end-joining pathway in response to DNA double-strand breaks.
    Dong J; Zhang T; Ren Y; Wang Z; Ling CC; He F; Li GC; Wang C; Wen B
    Oncotarget; 2017 Apr; 8(14):22662-22673. PubMed ID: 28186989
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Intrinsically Disordered APLF Links Ku, DNA-PKcs, and XRCC4-DNA Ligase IV in an Extended Flexible Non-homologous End Joining Complex.
    Hammel M; Yu Y; Radhakrishnan SK; Chokshi C; Tsai MS; Matsumoto Y; Kuzdovich M; Remesh SG; Fang S; Tomkinson AE; Lees-Miller SP; Tainer JA
    J Biol Chem; 2016 Dec; 291(53):26987-27006. PubMed ID: 27875301
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation of Ku dictates DNA double-strand break (DSB) repair pathway choice in S phase.
    Lee KJ; Saha J; Sun J; Fattah KR; Wang SC; Jakob B; Chi L; Wang SY; Taucher-Scholz G; Davis AJ; Chen DJ
    Nucleic Acids Res; 2016 Feb; 44(4):1732-45. PubMed ID: 26712563
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biochemical evidence for Ku-independent backup pathways of NHEJ.
    Wang H; Perrault AR; Takeda Y; Qin W; Wang H; Iliakis G
    Nucleic Acids Res; 2003 Sep; 31(18):5377-88. PubMed ID: 12954774
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein phosphatases regulate DNA-dependent protein kinase activity.
    Douglas P; Moorhead GB; Ye R; Lees-Miller SP
    J Biol Chem; 2001 Jun; 276(22):18992-8. PubMed ID: 11376007
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ku and DNA-dependent protein kinase dynamic conformations and assembly regulate DNA binding and the initial non-homologous end joining complex.
    Hammel M; Yu Y; Mahaney BL; Cai B; Ye R; Phipps BM; Rambo RP; Hura GL; Pelikan M; So S; Abolfath RM; Chen DJ; Lees-Miller SP; Tainer JA
    J Biol Chem; 2010 Jan; 285(2):1414-23. PubMed ID: 19893054
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional significance of the interaction with Ku in DNA double-strand break recognition of XLF.
    Yano K; Morotomi-Yano K; Lee KJ; Chen DJ
    FEBS Lett; 2011 Mar; 585(6):841-6. PubMed ID: 21349273
    [TBL] [Abstract][Full Text] [Related]  

  • 13. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.
    Wang M; Wu W; Wu W; Rosidi B; Zhang L; Wang H; Iliakis G
    Nucleic Acids Res; 2006; 34(21):6170-82. PubMed ID: 17088286
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic analysis of the DNA-dependent protein kinase reveals an inhibitory role of Ku in late S-G2 phase DNA double-strand break repair.
    Fukushima T; Takata M; Morrison C; Araki R; Fujimori A; Abe M; Tatsumi K; Jasin M; Dhar PK; Sonoda E; Chiba T; Takeda S
    J Biol Chem; 2001 Nov; 276(48):44413-8. PubMed ID: 11577093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of DNA double strand break repair and chromosome aberration formation.
    Iliakis G; Wang H; Perrault AR; Boecker W; Rosidi B; Windhofer F; Wu W; Guan J; Terzoudi G; Pantelias G
    Cytogenet Genome Res; 2004; 104(1-4):14-20. PubMed ID: 15162010
    [TBL] [Abstract][Full Text] [Related]  

  • 16. DNA repair kinetics in SCID mice Sertoli cells and DNA-PKcs-deficient mouse embryonic fibroblasts.
    Ahmed EA; Vélaz E; Rosemann M; Gilbertz KP; Scherthan H
    Chromosoma; 2017 Mar; 126(2):287-298. PubMed ID: 27136939
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DNA repair. PAXX, a paralog of XRCC4 and XLF, interacts with Ku to promote DNA double-strand break repair.
    Ochi T; Blackford AN; Coates J; Jhujh S; Mehmood S; Tamura N; Travers J; Wu Q; Draviam VM; Robinson CV; Blundell TL; Jackson SP
    Science; 2015 Jan; 347(6218):185-188. PubMed ID: 25574025
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An SCF complex containing Fbxl12 mediates DNA damage-induced Ku80 ubiquitylation.
    Postow L; Funabiki H
    Cell Cycle; 2013 Feb; 12(4):587-95. PubMed ID: 23324393
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PP2A-B56ϵ complex is involved in dephosphorylation of γ-H2AX in the repair process of CPT-induced DNA double-strand breaks.
    Li X; Nan A; Xiao Y; Chen Y; Lai Y
    Toxicology; 2015 May; 331():57-65. PubMed ID: 25772433
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ku regulates the non-homologous end joining pathway choice of DNA double-strand break repair in human somatic cells.
    Fattah F; Lee EH; Weisensel N; Wang Y; Lichter N; Hendrickson EA
    PLoS Genet; 2010 Feb; 6(2):e1000855. PubMed ID: 20195511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.