These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 1979533)

  • 21. Alterations in CNS amine levels by acclimatization to hypobaric hypoxia.
    Hughes MJ; Light KE; Redington T
    Brain Res Bull; 1983 Aug; 11(2):255-8. PubMed ID: 6627045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metabolic meaning of elevated levels of oxidative enzymes in high altitude adapted animals: an interpretive hypothesis.
    Hochachka PW; Stanley C; Merkt J; Sumar-Kalinowski J
    Respir Physiol; 1983 Jun; 52(3):303-13. PubMed ID: 6612104
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tolerance of altitude-acclimatized rats to exercise in the cold.
    Altland PD
    Proc Soc Exp Biol Med; 1975 Jul; 149(3):656-60. PubMed ID: 1144456
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of 2200-m hypoxia on glucidic metabolism.
    Groza P; Boerescu J; Stefan M; Cârmaciu R
    Physiologie; 1975; 12(3):161-4. PubMed ID: 172924
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acid-base characteristics of steady-state exercise in rats adapted to simulated altitude.
    Gonzalez NC; Dolezal S; Clancy RL
    Adv Exp Med Biol; 1990; 277():817-24. PubMed ID: 2096682
    [No Abstract]   [Full Text] [Related]  

  • 26. Increased affinity to substrate in sarcolemmal ATPases from hearts acclimatized to high altitude hypoxia.
    Ziegelhöffer A; Procházka J; Pelouch V; Ostádal B; Dzurba A; Vrbjar N
    Physiol Bohemoslov; 1987; 36(5):403-15. PubMed ID: 2827200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Skeletal muscle metabolism and work capacity: a 31P-NMR study of Andean natives and lowlanders.
    Matheson GO; Allen PS; Ellinger DC; Hanstock CC; Gheorghiu D; McKenzie DC; Stanley C; Parkhouse WS; Hochachka PW
    J Appl Physiol (1985); 1991 May; 70(5):1963-76. PubMed ID: 1864776
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Exogenous sphingosine-1-phosphate boosts acclimatization in rats exposed to acute hypobaric hypoxia: assessment of haematological and metabolic effects.
    Chawla S; Rahar B; Singh M; Bansal A; Saraswat D; Saxena S
    PLoS One; 2014; 9(6):e98025. PubMed ID: 24887065
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Intermittent hypobaric hypoxia induces altitude acclimation and improves the lactate threshold.
    Casas M; Casas H; Pagés T; Rama R; Ricart A; Ventura JL; Ibáñez J; Rodríguez FA; Viscor G
    Aviat Space Environ Med; 2000 Feb; 71(2):125-30. PubMed ID: 10685585
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of Acute and Chronic Exposure to High Altitude on the Aerobic and Anaerobic Metabolism in Rats.
    Ni Q; Wan FQ; Jing YH; Dong XY; Zhang YC
    Anal Cell Pathol (Amst); 2015; 2015():159549. PubMed ID: 26640758
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Liver function in rats acclimatized to a simulated altitude of 5500 m.
    Ou LC; Faulkner C; Tam V; Leiter JC
    High Alt Med Biol; 2013 Dec; 14(4):375-82. PubMed ID: 24377345
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The effect of chronic hypoxia on the developing cardiopulmonary system.
    Ostádal B; Kolár F; Pelouch V; Bass A; Samánek M; Procházka J
    Biomed Biochim Acta; 1989; 48(2-3):S58-62. PubMed ID: 2525033
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy metabolism and the high-altitude environment.
    Murray AJ
    Exp Physiol; 2016 Jan; 101(1):23-7. PubMed ID: 26315373
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Metabolic adaptation of myocardial mitochondria to mild altitude hypoxia.
    Gvozdjáková A; Kucharská J; Miklovicová E; Rajecová O; Gvozdják J
    Int J Cardiol; 1992 Jul; 36(1):103-6. PubMed ID: 1428239
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Transport ATPases in the erythrocytes of rats acclimatized to intermittent altitude hypoxia.
    Kazennov AM; Procházka J; Pelouch V; Ostádal B; Maslova NM
    Physiol Bohemoslov; 1986; 35(5):406-13. PubMed ID: 3025901
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The energetic significance of lactate accumulation in blood at altitude.
    Cerretelli P; Binzoni T
    Int J Sports Med; 1990 Feb; 11 Suppl 1():S27-30. PubMed ID: 2323860
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of high altitude (7,620 m) exposure on glutathione and related metabolism in rats.
    Singh SN; Vats P; Kumria MM; Ranganathan S; Shyam R; Arora MP; Jain CL; Sridharan K
    Eur J Appl Physiol; 2001 Mar; 84(3):233-7. PubMed ID: 11320641
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The pyruvate branchpoint in the anaerobic energy metabolism of the jumping cockle Cardium tuberculatum L.: D-lactate formation during environmental anaerobiosis versus octopine formation during exercise.
    Meinardus-Hager G; Gäde G
    Exp Biol; 1986; 45(2):91-110. PubMed ID: 2422053
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Muscle accounts for glucose disposal but not blood lactate appearance during exercise after acclimatization to 4,300 m.
    Brooks GA; Wolfel EE; Groves BM; Bender PR; Butterfield GE; Cymerman A; Mazzeo RS; Sutton JR; Wolfe RR; Reeves JT
    J Appl Physiol (1985); 1992 Jun; 72(6):2435-45. PubMed ID: 1629100
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Altitude acclimatization and energy metabolic adaptations in skeletal muscle during exercise.
    Green HJ; Sutton JR; Wolfel EE; Reeves JT; Butterfield GE; Brooks GA
    J Appl Physiol (1985); 1992 Dec; 73(6):2701-8. PubMed ID: 1490988
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.