BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 19795418)

  • 1. Kallikrein-related peptidase-4 initiates tumor-stroma interactions in prostate cancer through protease-activated receptor-1.
    Wang W; Mize GJ; Zhang X; Takayama TK
    Int J Cancer; 2010 Feb; 126(3):599-610. PubMed ID: 19795418
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Protease-activated receptor-1 upregulates fibroblast growth factor 7 in stroma of benign prostatic hyperplasia.
    Wang W; Zhang X; Mize GJ; Takayama TK
    Prostate; 2008 Jul; 68(10):1064-75. PubMed ID: 18386288
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of two WFDC1/ps20 isoforms in prostate stromal cells induces paracrine apoptosis through regulation of PTGS2/COX-2.
    Hickman OJ; Smith RA; Dasgupta P; Rao SN; Nayak S; Sreenivasan S; Vyakarnam A; Galustian C
    Br J Cancer; 2016 May; 114(11):1235-42. PubMed ID: 27115470
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Kallikrein-related peptidase 4 induces cancer-associated fibroblast features in prostate-derived stromal cells.
    Kryza T; Silva LM; Bock N; Fuhrman-Luck RA; Stephens CR; Gao J; Samaratunga H; ; Lawrence MG; Hooper JD; Dong Y; Risbridger GP; Clements JA
    Mol Oncol; 2017 Oct; 11(10):1307-1329. PubMed ID: 28510269
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kallikrein-related peptidase 4 (KLK4) initiates intracellular signaling via protease-activated receptors (PARs). KLK4 and PAR-2 are co-expressed during prostate cancer progression.
    Ramsay AJ; Dong Y; Hunt ML; Linn M; Samaratunga H; Clements JA; Hooper JD
    J Biol Chem; 2008 May; 283(18):12293-304. PubMed ID: 18308730
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prostate-specific kallikreins-2 and -4 enhance the proliferation of DU-145 prostate cancer cells through protease-activated receptors-1 and -2.
    Mize GJ; Wang W; Takayama TK
    Mol Cancer Res; 2008 Jun; 6(6):1043-51. PubMed ID: 18567807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estrogens promote invasion of prostate cancer cells in a paracrine manner through up-regulation of matrix metalloproteinase 2 in prostatic stromal cells.
    Yu L; Wang CY; Shi J; Miao L; Du X; Mayer D; Zhang J
    Endocrinology; 2011 Mar; 152(3):773-81. PubMed ID: 21248144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thrombin/thrombin receptor (PAR-1)-mediated induction of IL-8 and VEGF expression in prostate cancer cells.
    Liu J; Schuff-Werner P; Steiner M
    Biochem Biophys Res Commun; 2006 Apr; 343(1):183-9. PubMed ID: 16530725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Trypsin stimulates the phosphorylation of p42,44 mitogen-activated protein kinases via the proteinase-activated receptor-2 and protein kinase C epsilon in human cultured prostate stromal cells.
    Myatt A; Hill SJ
    Prostate; 2005 Jul; 64(2):175-85. PubMed ID: 15678497
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protease-activated receptor-1 is upregulated in reactive stroma of primary prostate cancer and bone metastasis.
    Zhang X; Wang W; True LD; Vessella RL; Takayama TK
    Prostate; 2009 May; 69(7):727-36. PubMed ID: 19170048
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kallikrein 4 is a proliferative factor that is overexpressed in prostate cancer.
    Klokk TI; Kilander A; Xi Z; Waehre H; Risberg B; Danielsen HE; Saatcioglu F
    Cancer Res; 2007 Jun; 67(11):5221-30. PubMed ID: 17545602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thrombin-stimulated growth factor and cytokine expression in osteoblasts is mediated by protease-activated receptor-1 and prostanoids.
    Pagel CN; Song SJ; Loh LH; Tudor EM; Murray-Rust TA; Pike RN; Mackie EJ
    Bone; 2009 May; 44(5):813-21. PubMed ID: 19442625
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Stromal cells from human benign prostate hyperplasia produce a growth-inhibitory factor for LNCaP prostate cancer cells, identified as interleukin-6.
    Degeorges A; Tatoud R; Fauvel-Lafeve F; Podgorniak MP; Millot G; de Cremoux P; Calvo F
    Int J Cancer; 1996 Oct; 68(2):207-14. PubMed ID: 8900430
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thrombin and PAR-1-AP increase proinflammatory cytokine expression in C6 cells.
    Fan Y; Zhang W; Mulholland M
    J Surg Res; 2005 Dec; 129(2):196-201. PubMed ID: 16143343
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Colon Cancer Growth and Dissemination Relies upon Thrombin, Stromal PAR-1, and Fibrinogen.
    Adams GN; Rosenfeldt L; Frederick M; Miller W; Waltz D; Kombrinck K; McElhinney KE; Flick MJ; Monia BP; Revenko AS; Palumbo JS
    Cancer Res; 2015 Oct; 75(19):4235-43. PubMed ID: 26238780
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of thrombin-induced plasminogen activator inhibitor-1 in 4T1 murine breast cancer cells.
    McEachron TA; Church FC; Mackman N
    Blood Coagul Fibrinolysis; 2011 Oct; 22(7):576-82. PubMed ID: 21799402
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The effect of LHRH antagonist cetrorelix in crossover conditioned media from epithelial (BPH-1) and stromal (WPMY-1) prostate cells.
    Siejka A; Schally AV; Barabutis N
    Horm Metab Res; 2014 Jan; 46(1):21-6. PubMed ID: 23839655
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thrombin alters the synthesis and processing of CYR61/CCN1 in human corneal stromal fibroblasts and myofibroblasts through multiple distinct mechanisms.
    Andreae EA; Warejcka DJ; Twining SS
    Mol Vis; 2020; 26():540-562. PubMed ID: 32818017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane-type serine protease-1/matriptase induces interleukin-6 and -8 in endothelial cells by activation of protease-activated receptor-2: potential implications in atherosclerosis.
    Seitz I; Hess S; Schulz H; Eckl R; Busch G; Montens HP; Brandl R; Seidl S; Schömig A; Ott I
    Arterioscler Thromb Vasc Biol; 2007 Apr; 27(4):769-75. PubMed ID: 17255532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PAR1-mediated NFkappaB activation promotes survival of prostate cancer cells through a Bcl-xL-dependent mechanism.
    Tantivejkul K; Loberg RD; Mawocha SC; Day LL; John LS; Pienta BA; Rubin MA; Pienta KJ
    J Cell Biochem; 2005 Oct; 96(3):641-52. PubMed ID: 16052512
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.