BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

99 related articles for article (PubMed ID: 19795569)

  • 1. Determinants for psychrophilic and thermophilic features of metallopeptidases of the M4 family.
    Khan MT; Sylte I
    In Silico Biol; 2009; 9(3):105-24. PubMed ID: 19795569
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative sequence and structure analysis reveal features of cold adaptation of an enzyme in the thermolysin family.
    Adekoya OA; Helland R; Willassen NP; Sylte I
    Proteins; 2006 Feb; 62(2):435-49. PubMed ID: 16294337
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The thermolysin family (M4) of enzymes: therapeutic and biotechnological potential.
    Adekoya OA; Sylte I
    Chem Biol Drug Des; 2009 Jan; 73(1):7-16. PubMed ID: 19152630
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cold-adaptation: comparative analysis of two homologous families of psychrophilic and mesophilic signal proteins of the protozoan ciliate, Euplotes.
    Alimenti C; Vallesi A; Pedrini B; Wüthrich K; Luporini P
    IUBMB Life; 2009 Aug; 61(8):838-45. PubMed ID: 19621350
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A clade of trypsins found in cold-adapted fish.
    Roach JC
    Proteins; 2002 Apr; 47(1):31-44. PubMed ID: 11870863
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Environment specific substitution tables for thermophilic proteins.
    Mizuguchi K; Sele M; Cubellis MV
    BMC Bioinformatics; 2007 Mar; 8 Suppl 1(Suppl 1):S15. PubMed ID: 17430559
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of a cold-adapted class C beta-lactamase.
    Michaux C; Massant J; Kerff F; Frère JM; Docquier JD; Vandenberghe I; Samyn B; Pierrard A; Feller G; Charlier P; Van Beeumen J; Wouters J
    FEBS J; 2008 Apr; 275(8):1687-97. PubMed ID: 18312599
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cold-adapted tubulins in the glacier ice worm, Mesenchytraeus solifugus.
    Tartaglia LJ; Shain DH
    Gene; 2008 Nov; 423(2):135-41. PubMed ID: 18718858
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural insights into cold inactivation of tryptophanase and cold adaptation of subtilisin S41.
    Almog O; Kogan A; Leeuw Md; Gdalevsky GY; Cohen-Luria R; Parola AH
    Biopolymers; 2008 May; 89(5):354-9. PubMed ID: 17937401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Adaptation of class-13 alpha-amylases to diverse living conditions.
    Linden A; Wilmanns M
    Chembiochem; 2004 Feb; 5(2):231-9. PubMed ID: 14760745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cold adaptation of zinc metalloproteases in the thermolysin family from deep sea and arctic sea ice bacteria revealed by catalytic and structural properties and molecular dynamics: new insights into relationship between conformational flexibility and hydrogen bonding.
    Xie BB; Bian F; Chen XL; He HL; Guo J; Gao X; Zeng YX; Chen B; Zhou BC; Zhang YZ
    J Biol Chem; 2009 Apr; 284(14):9257-69. PubMed ID: 19181663
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of low-temperature caseinolytic activity of a thermophilic subtilase by directed evolution and site-directed mutagenesis.
    Zhong CQ; Song S; Fang N; Liang X; Zhu H; Tang XF; Tang B
    Biotechnol Bioeng; 2009 Dec; 104(5):862-70. PubMed ID: 19609954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A new method for the extracellular production of recombinant thermolysin by co-expressing the mature sequence and pro-sequence in Escherichia coli.
    Yasukawa K; Kusano M; Inouye K
    Protein Eng Des Sel; 2007 Aug; 20(8):375-83. PubMed ID: 17616558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequence and structural parameters enhancing adaptation of proteins to low temperatures.
    Jahandideh S; Abdolmaleki P; Jahandideh M; Barzegari Asadabadi E
    J Theor Biol; 2007 May; 246(1):159-66. PubMed ID: 17275036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative studies of endonuclease I from cold-adapted Vibrio salmonicida and mesophilic Vibrio cholerae.
    Altermark B; Niiranen L; Willassen NP; Smalås AO; Moe E
    FEBS J; 2007 Jan; 274(1):252-63. PubMed ID: 17222185
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cold-adapted maturation of thermophilic WF146 protease by mimicking the propeptide binding interactions of psychrophilic subtilisin S41.
    Yang YR; Zhu H; Fang N; Liang X; Zhong CQ; Tang XF; Shen P; Tang B
    FEBS Lett; 2008 Jul; 582(17):2620-6. PubMed ID: 18586033
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An expanded family of fungalysin extracellular metallopeptidases of Coprinopsis cinerea.
    Lilly WW; Stajich JE; Pukkila PJ; Wilke SK; Inoguchi N; Gathman AC
    Mycol Res; 2008 Mar; 112(Pt 3):389-98. PubMed ID: 18313909
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptation of model proteins from cold to hot environments involves continuous and small adjustments of average parameters related to amino acid composition.
    De Vendittis E; Castellano I; Cotugno R; Ruocco MR; Raimo G; Masullo M
    J Theor Biol; 2008 Jan; 250(1):156-71. PubMed ID: 17950361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Cold spots" in protein cold adaptation: Insights from normalized atomic displacement parameters (B'-factors).
    Siglioccolo A; Gerace R; Pascarella S
    Biophys Chem; 2010 Dec; 153(1):104-14. PubMed ID: 21075502
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutational effect for stability in a conserved region of thermolysin.
    Matsumiya Y; Nishikawa K; Inouye K; Kubo M
    Lett Appl Microbiol; 2005; 40(5):329-34. PubMed ID: 15836734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.