These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 19795834)
61. Three-dimensional structure of the diphtheria toxin repressor in complex with divalent cation co-repressors. Qiu X; Verlinde CL; Zhang S; Schmitt MP; Holmes RK; Hol WG Structure; 1995 Jan; 3(1):87-100. PubMed ID: 7743135 [TBL] [Abstract][Full Text] [Related]
62. Crystal structure of the iron-dependent regulator (IdeR) from Mycobacterium tuberculosis shows both metal binding sites fully occupied. Pohl E; Holmes RK; Hol WG J Mol Biol; 1999 Jan; 285(3):1145-56. PubMed ID: 9887269 [TBL] [Abstract][Full Text] [Related]
63. Identification and characterization of three new promoter/operators from Corynebacterium diphtheriae that are regulated by the diphtheria toxin repressor (DtxR) and iron. Lee JH; Wang T; Ault K; Liu J; Schmitt MP; Holmes RK Infect Immun; 1997 Oct; 65(10):4273-80. PubMed ID: 9317037 [TBL] [Abstract][Full Text] [Related]
64. Involvement of the adc operon and manganese homeostasis in Streptococcus gordonii biofilm formation. Loo CY; Mitrakul K; Voss IB; Hughes CV; Ganeshkumar N J Bacteriol; 2003 May; 185(9):2887-900. PubMed ID: 12700268 [TBL] [Abstract][Full Text] [Related]
65. Analysis of the Manganese and MntR Regulon in Corynebacterium diphtheriae. Peng ED; Lyman LR; Schmitt MP J Bacteriol; 2021 Sep; 203(20):e0027421. PubMed ID: 34370555 [TBL] [Abstract][Full Text] [Related]
66. Metal ion activation and DNA recognition by the Deinococcus radiodurans manganese sensor DR2539. Mota C; Webster M; Saidi M; Kapp U; Zubieta C; Giachin G; Manso JA; de Sanctis D FEBS J; 2024 Aug; 291(15):3384-3402. PubMed ID: 38652591 [TBL] [Abstract][Full Text] [Related]
67. Crystal structure of native and Cd/Cd-substituted Dioclea guianensis seed lectin. A novel manganese-binding site and structural basis of dimer-tetramer association. Wah DA; Romero A; Gallego del Sol F; Cavada BS; Ramos MV; Grangeiro TB; Sampaio AH; Calvete JJ J Mol Biol; 2001 Jul; 310(4):885-94. PubMed ID: 11453695 [TBL] [Abstract][Full Text] [Related]
68. Anion-coordinating residues at binding site 1 are essential for the biological activity of the diphtheria toxin repressor. Goranson-Siekierke J; Pohl E; Hol WG; Holmes RK Infect Immun; 1999 Apr; 67(4):1806-11. PubMed ID: 10085021 [TBL] [Abstract][Full Text] [Related]
69. Iron, DtxR, and the regulation of diphtheria toxin expression. Tao X; Schiering N; Zeng HY; Ringe D; Murphy JR Mol Microbiol; 1994 Oct; 14(2):191-7. PubMed ID: 7830565 [TBL] [Abstract][Full Text] [Related]
70. Selectivity of Ni(II) and Zn(II) binding to Sporosarcina pasteurii UreE, a metallochaperone in the urease assembly: a calorimetric and crystallographic study. Zambelli B; Banaszak K; Merloni A; Kiliszek A; Rypniewski W; Ciurli S J Biol Inorg Chem; 2013 Dec; 18(8):1005-17. PubMed ID: 24126709 [TBL] [Abstract][Full Text] [Related]
71. Identification of the primary metal ion-activation sites of the diphtheria tox repressor by X-ray crystallography and site-directed mutational analysis. Ding X; Zeng H; Schiering N; Ringe D; Murphy JR Nat Struct Biol; 1996 Apr; 3(4):382-7. PubMed ID: 8599765 [TBL] [Abstract][Full Text] [Related]
72. Iron and Zinc Regulate Expression of a Putative ABC Metal Transporter in Corynebacterium diphtheriae. Peng ED; Oram DM; Battistel MD; Lyman LR; Freedberg DI; Schmitt MP J Bacteriol; 2018 May; 200(10):. PubMed ID: 29507090 [No Abstract] [Full Text] [Related]
73. Structural and functional characterization of the transcriptional repressor CsoR from Thermus thermophilus HB8. Sakamoto K; Agari Y; Agari K; Kuramitsu S; Shinkai A Microbiology (Reading); 2010 Jul; 156(Pt 7):1993-2005. PubMed ID: 20395270 [TBL] [Abstract][Full Text] [Related]
74. Functional studies of the Mycobacterium tuberculosis iron-dependent regulator. Chou CJ; Wisedchaisri G; Monfeli RR; Oram DM; Holmes RK; Hol WG; Beeson C J Biol Chem; 2004 Dec; 279(51):53554-61. PubMed ID: 15456786 [TBL] [Abstract][Full Text] [Related]
75. Substitution of the Native Zn(II) with Cd(II), Co(II) and Ni(II) Changes the Downhill Unfolding Mechanism of Ros87 to a Completely Different Scenario. Grazioso R; García-Viñuales S; Russo L; D'Abrosca G; Esposito S; Zaccaro L; Iacovino R; Milardi D; Fattorusso R; Malgieri G; Isernia C Int J Mol Sci; 2020 Nov; 21(21):. PubMed ID: 33167398 [TBL] [Abstract][Full Text] [Related]
76. MntR modulates expression of the PerR regulon and superoxide resistance in Staphylococcus aureus through control of manganese uptake. Horsburgh MJ; Wharton SJ; Cox AG; Ingham E; Peacock S; Foster SJ Mol Microbiol; 2002 Jun; 44(5):1269-86. PubMed ID: 12028379 [TBL] [Abstract][Full Text] [Related]
77. Crystal structure of the ATP-dependent maturation factor of Ni,Fe-containing carbon monoxide dehydrogenases. Jeoung JH; Giese T; Grünwald M; Dobbek H J Mol Biol; 2010 Mar; 396(4):1165-79. PubMed ID: 20064527 [TBL] [Abstract][Full Text] [Related]
78. Sequence of ligand binding and structure change in the diphtheria toxin repressor upon activation by divalent transition metals. Rangachari V; Marin V; Bienkiewicz EA; Semavina M; Guerrero L; Love JF; Murphy JR; Logan TM Biochemistry; 2005 Apr; 44(15):5672-82. PubMed ID: 15823025 [TBL] [Abstract][Full Text] [Related]
79. Generating a Metal-responsive Transcriptional Regulator to Test What Confers Metal Sensing in Cells. Osman D; Piergentili C; Chen J; Chakrabarti B; Foster AW; Lurie-Luke E; Huggins TG; Robinson NJ J Biol Chem; 2015 Aug; 290(32):19806-22. PubMed ID: 26109070 [TBL] [Abstract][Full Text] [Related]
80. Role of bound Zn(II) in the CadC Cd(II)/Pb(II)/Zn(II)-responsive repressor. Kandegedara A; Thiyagarajan S; Kondapalli KC; Stemmler TL; Rosen BP J Biol Chem; 2009 May; 284(22):14958-65. PubMed ID: 19286656 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]