These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 19795909)

  • 1. Envisioning the loop movements and rotation of the two subdomains of dihydrofolate reductase by elastic normal mode analysis.
    Luo J; Bruice TC
    J Biomol Struct Dyn; 2009 Dec; 27(3):245-58. PubMed ID: 19795909
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Allosteric communication in dihydrofolate reductase: signaling network and pathways for closed to occluded transition and back.
    Chen J; Dima RI; Thirumalai D
    J Mol Biol; 2007 Nov; 374(1):250-66. PubMed ID: 17916364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Loop and subdomain movements in the mechanism of Escherichia coli dihydrofolate reductase: crystallographic evidence.
    Sawaya MR; Kraut J
    Biochemistry; 1997 Jan; 36(3):586-603. PubMed ID: 9012674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strength of an interloop hydrogen bond determines the kinetic pathway in catalysis by Escherichia coli dihydrofolate reductase.
    Miller GP; Benkovic SJ
    Biochemistry; 1998 May; 37(18):6336-42. PubMed ID: 9572848
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.
    Venkitakrishnan RP; Zaborowski E; McElheny D; Benkovic SJ; Dyson HJ; Wright PE
    Biochemistry; 2004 Dec; 43(51):16046-55. PubMed ID: 15609999
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The dynamic energy landscape of dihydrofolate reductase catalysis.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Science; 2006 Sep; 313(5793):1638-42. PubMed ID: 16973882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structures of Escherichia coli dihydrofolate reductase complexed with 5-formyltetrahydrofolate (folinic acid) in two space groups: evidence for enolization of pteridine O4.
    Lee H; Reyes VM; Kraut J
    Biochemistry; 1996 Jun; 35(22):7012-20. PubMed ID: 8679526
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of Active Site Loop Dynamics in Mediating Ligand Release from
    Singh A; Fenwick RB; Dyson HJ; Wright PE
    Biochemistry; 2021 Sep; 60(35):2663-2671. PubMed ID: 34428034
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure, dynamics, and catalytic function of dihydrofolate reductase.
    Schnell JR; Dyson HJ; Wright PE
    Annu Rev Biophys Biomol Struct; 2004; 33():119-40. PubMed ID: 15139807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Incorporating dynamics in E. coli dihydrofolate reductase enhances structure-based drug discovery.
    Lerner MG; Bowman AL; Carlson HA
    J Chem Inf Model; 2007; 47(6):2358-65. PubMed ID: 17877338
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.
    McElheny D; Schnell JR; Lansing JC; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2005 Apr; 102(14):5032-7. PubMed ID: 15795383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cofactor-Mediated Conformational Dynamics Promote Product Release From Escherichia coli Dihydrofolate Reductase via an Allosteric Pathway.
    Oyen D; Fenwick RB; Stanfield RL; Dyson HJ; Wright PE
    J Am Chem Soc; 2015 Jul; 137(29):9459-68. PubMed ID: 26147643
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.
    Boehr DD; McElheny D; Dyson HJ; Wright PE
    Proc Natl Acad Sci U S A; 2010 Jan; 107(4):1373-8. PubMed ID: 20080605
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A perspective on enzyme catalysis.
    Benkovic SJ; Hammes-Schiffer S
    Science; 2003 Aug; 301(5637):1196-202. PubMed ID: 12947189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evidence for a functional role of the dynamics of glycine-121 of Escherichia coli dihydrofolate reductase obtained from kinetic analysis of a site-directed mutant.
    Cameron CE; Benkovic SJ
    Biochemistry; 1997 Dec; 36(50):15792-800. PubMed ID: 9398309
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Engineering specificity for folate into dihydrofolate reductase from Escherichia coli.
    Posner BA; Li L; Bethell R; Tsuji T; Benkovic SJ
    Biochemistry; 1996 Feb; 35(5):1653-63. PubMed ID: 8634297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain motions and the open-to-closed conformational transition of an enzyme: a normal mode analysis of S-adenosyl-L-homocysteine hydrolase.
    Wang M; Borchardt RT; Schowen RL; Kuczera K
    Biochemistry; 2005 May; 44(19):7228-39. PubMed ID: 15882061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of coupled motions in Escherichia coli and Bacillus subtilis dihydrofolate reductase.
    Watney JB; Hammes-Schiffer S
    J Phys Chem B; 2006 May; 110(20):10130-8. PubMed ID: 16706474
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ligand-induced conformational changes in the crystal structures of Pneumocystis carinii dihydrofolate reductase complexes with folate and NADP+.
    Cody V; Galitsky N; Rak D; Luft JR; Pangborn W; Queener SF
    Biochemistry; 1999 Apr; 38(14):4303-12. PubMed ID: 10194348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetic reaction scheme for the dihydrofolate reductase domain of the bifunctional thymidylate synthase-dihydrofolate reductase from Leishmania major.
    Liang PH; Anderson KS
    Biochemistry; 1998 Sep; 37(35):12206-12. PubMed ID: 9724534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.