These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 19795909)
21. Pivotal role of Gly 121 in dihydrofolate reductase from Escherichia coli: the altered structure of a mutant enzyme may form the basis of its diminished catalytic performance. Swanwick RS; Shrimpton PJ; Allemann RK Biochemistry; 2004 Apr; 43(14):4119-27. PubMed ID: 15065854 [TBL] [Abstract][Full Text] [Related]
22. Effect of cofactor binding and loop conformation on side chain methyl dynamics in dihydrofolate reductase. Schnell JR; Dyson HJ; Wright PE Biochemistry; 2004 Jan; 43(2):374-83. PubMed ID: 14717591 [TBL] [Abstract][Full Text] [Related]
23. Mechanistic analysis of allosteric and non-allosteric effects arising from nanobody binding to two epitopes of the dihydrofolate reductase of Escherichia coli. Oyen D; Wechselberger R; Srinivasan V; Steyaert J; Barlow JN Biochim Biophys Acta; 2013 Oct; 1834(10):2147-57. PubMed ID: 23911607 [TBL] [Abstract][Full Text] [Related]
24. Conformational relaxation following hydride transfer plays a limiting role in dihydrofolate reductase catalysis. Boehr DD; Dyson HJ; Wright PE Biochemistry; 2008 Sep; 47(35):9227-33. PubMed ID: 18690714 [TBL] [Abstract][Full Text] [Related]
25. Solvent effects on catalysis by Escherichia coli dihydrofolate reductase. Loveridge EJ; Tey LH; Allemann RK J Am Chem Soc; 2010 Jan; 132(3):1137-43. PubMed ID: 20047317 [TBL] [Abstract][Full Text] [Related]
26. Functional role of a mobile loop of Escherichia coli dihydrofolate reductase in transition-state stabilization. Li L; Falzone CJ; Wright PE; Benkovic SJ Biochemistry; 1992 Sep; 31(34):7826-33. PubMed ID: 1510968 [TBL] [Abstract][Full Text] [Related]
27. Reaction-path energetics and kinetics of the hydride transfer reaction catalyzed by dihydrofolate reductase. Garcia-Viloca M; Truhlar DG; Gao J Biochemistry; 2003 Nov; 42(46):13558-75. PubMed ID: 14622003 [TBL] [Abstract][Full Text] [Related]
28. Conformational selection and induced changes along the catalytic cycle of Escherichia coli dihydrofolate reductase. Weikl TR; Boehr DD Proteins; 2012 Oct; 80(10):2369-83. PubMed ID: 22641560 [TBL] [Abstract][Full Text] [Related]
29. Structures of dihydrofolate reductase-thymidylate synthase of Trypanosoma cruzi in the folate-free state and in complex with two antifolate drugs, trimetrexate and methotrexate. Senkovich O; Schormann N; Chattopadhyay D Acta Crystallogr D Biol Crystallogr; 2009 Jul; 65(Pt 7):704-16. PubMed ID: 19564691 [TBL] [Abstract][Full Text] [Related]
30. A 2.13 A structure of E. coli dihydrofolate reductase bound to a novel competitive inhibitor reveals a new binding surface involving the M20 loop region. Summerfield RL; Daigle DM; Mayer S; Mallik D; Hughes DW; Jackson SG; Sulek M; Organ MG; Brown ED; Junop MS J Med Chem; 2006 Nov; 49(24):6977-86. PubMed ID: 17125251 [TBL] [Abstract][Full Text] [Related]
31. High-pressure protein crystal structure analysis of Escherichia coli dihydrofolate reductase complexed with folate and NADP Nagae T; Yamada H; Watanabe N Acta Crystallogr D Struct Biol; 2018 Sep; 74(Pt 9):895-905. PubMed ID: 30198899 [TBL] [Abstract][Full Text] [Related]
32. Functional role for Tyr 31 in the catalytic cycle of chicken dihydrofolate reductase. Shrimpton P; Mullaney A; Allemann RK Proteins; 2003 May; 51(2):216-23. PubMed ID: 12660990 [TBL] [Abstract][Full Text] [Related]
34. Backbone dynamics in dihydrofolate reductase complexes: role of loop flexibility in the catalytic mechanism. Osborne MJ; Schnell J; Benkovic SJ; Dyson HJ; Wright PE Biochemistry; 2001 Aug; 40(33):9846-59. PubMed ID: 11502178 [TBL] [Abstract][Full Text] [Related]
35. E. coli 5'-nucleotidase undergoes a hinge-bending domain rotation resembling a ball-and-socket motion. Knöfel T; Sträter N J Mol Biol; 2001 May; 309(1):255-66. PubMed ID: 11491294 [TBL] [Abstract][Full Text] [Related]
36. Deletion of a highly motional residue affects formation of the Michaelis complex for Escherichia coli dihydrofolate reductase. Miller GP; Benkovic SJ Biochemistry; 1998 May; 37(18):6327-35. PubMed ID: 9572847 [TBL] [Abstract][Full Text] [Related]
37. Defining the Structural Basis for Allosteric Product Release from E. coli Dihydrofolate Reductase Using NMR Relaxation Dispersion. Oyen D; Fenwick RB; Aoto PC; Stanfield RL; Wilson IA; Dyson HJ; Wright PE J Am Chem Soc; 2017 Aug; 139(32):11233-11240. PubMed ID: 28737940 [TBL] [Abstract][Full Text] [Related]
38. How dihydrofolate reductase facilitates protonation of dihydrofolate. Rod TH; Brooks CL J Am Chem Soc; 2003 Jul; 125(29):8718-9. PubMed ID: 12862454 [TBL] [Abstract][Full Text] [Related]
39. Importance of Arg-599 of β-galactosidase (Escherichia coli) as an anchor for the open conformations of Phe-601 and the active-site loop. Dugdale ML; Vance ML; Wheatley RW; Driedger MR; Nibber A; Tran A; Huber RE Biochem Cell Biol; 2010 Dec; 88(6):969-79. PubMed ID: 21102659 [TBL] [Abstract][Full Text] [Related]
40. Role of ionic interactions in ligand binding and catalysis of R67 dihydrofolate reductase. Hicks SN; Smiley RD; Hamilton JB; Howell EE Biochemistry; 2003 Sep; 42(36):10569-78. PubMed ID: 12962480 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]