BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

540 related articles for article (PubMed ID: 19796079)

  • 21. Improved antisense oligonucleotide induced exon skipping in the mdx mouse model of muscular dystrophy.
    Mann CJ; Honeyman K; McClorey G; Fletcher S; Wilton SD
    J Gene Med; 2002; 4(6):644-54. PubMed ID: 12439856
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Target selection for antisense oligonucleotide induced exon skipping in the dystrophin gene.
    Errington SJ; Mann CJ; Fletcher S; Wilton SD
    J Gene Med; 2003 Jun; 5(6):518-27. PubMed ID: 12797117
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Induction of dystrophin expression by exon skipping in mdx mice following intramuscular injection of antisense oligonucleotides complexed with PEG-PEI copolymers.
    Williams JH; Sirsi SR; Latta DR; Lutz GJ
    Mol Ther; 2006 Jul; 14(1):88-96. PubMed ID: 16488666
    [TBL] [Abstract][Full Text] [Related]  

  • 24. DMD pseudoexon mutations: splicing efficiency, phenotype, and potential therapy.
    Gurvich OL; Tuohy TM; Howard MT; Finkel RS; Medne L; Anderson CB; Weiss RB; Wilton SD; Flanigan KM
    Ann Neurol; 2008 Jan; 63(1):81-9. PubMed ID: 18059005
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Exploring the frontiers of therapeutic exon skipping for Duchenne muscular dystrophy by double targeting within one or multiple exons.
    Aartsma-Rus A; Kaman WE; Weij R; den Dunnen JT; van Ommen GJ; van Deutekom JC
    Mol Ther; 2006 Sep; 14(3):401-7. PubMed ID: 16753346
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Exon 51 Skipping Quantification by Digital Droplet PCR in del52hDMD/mdx Mice.
    Hiller M; Spitali P; Datson N; Aartsma-Rus A
    Methods Mol Biol; 2018; 1828():249-262. PubMed ID: 30171546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional amounts of dystrophin produced by skipping the mutated exon in the mdx dystrophic mouse.
    Lu QL; Mann CJ; Lou F; Bou-Gharios G; Morris GE; Xue SA; Fletcher S; Partridge TA; Wilton SD
    Nat Med; 2003 Aug; 9(8):1009-14. PubMed ID: 12847521
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Use of Antisense Oligonucleotides for the Treatment of Duchenne Muscular Dystrophy.
    Relizani K; Goyenvalle A
    Methods Mol Biol; 2018; 1687():171-183. PubMed ID: 29067663
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Wild-type mouse models to screen antisense oligonucleotides for exon-skipping efficacy in Duchenne muscular dystrophy.
    Cao L; Han G; Gu B; Yin H
    PLoS One; 2014; 9(11):e111079. PubMed ID: 25365558
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rescue of dystrophic muscle through U7 snRNA-mediated exon skipping.
    Goyenvalle A; Vulin A; Fougerousse F; Leturcq F; Kaplan JC; Garcia L; Danos O
    Science; 2004 Dec; 306(5702):1796-9. PubMed ID: 15528407
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Systemic delivery of morpholino oligonucleotide restores dystrophin expression bodywide and improves dystrophic pathology.
    Alter J; Lou F; Rabinowitz A; Yin H; Rosenfeld J; Wilton SD; Partridge TA; Lu QL
    Nat Med; 2006 Feb; 12(2):175-7. PubMed ID: 16444267
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Designing Effective Antisense Oligonucleotides for Exon Skipping.
    Shimo T; Maruyama R; Yokota T
    Methods Mol Biol; 2018; 1687():143-155. PubMed ID: 29067661
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Duchenne and Becker muscular dystrophy: from gene diagnosis to molecular therapy.
    Matsuo M
    IUBMB Life; 2002 Mar; 53(3):147-52. PubMed ID: 12102170
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Bioinformatic and functional optimization of antisense phosphorodiamidate morpholino oligomers (PMOs) for therapeutic modulation of RNA splicing in muscle.
    Popplewell LJ; Graham IR; Malerba A; Dickson G
    Methods Mol Biol; 2011; 709():153-78. PubMed ID: 21194027
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Toward an oligonucleotide therapy for Duchenne muscular dystrophy: a complex development challenge.
    Wood MJ
    Sci Transl Med; 2010 Mar; 2(25):25ps15. PubMed ID: 20424011
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimizing antisense oligonucleotides using phosphorodiamidate morpholino oligomers.
    Popplewell LJ; Malerba A; Dickson G
    Methods Mol Biol; 2012; 867():143-67. PubMed ID: 22454060
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of a complex Duchenne muscular dystrophy-causing dystrophin gene inversion and restoration of the reading frame by induced exon skipping.
    Madden HR; Fletcher S; Davis MR; Wilton SD
    Hum Mutat; 2009 Jan; 30(1):22-8. PubMed ID: 18570328
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Overview on DMD exon skipping.
    Aartsma-Rus A
    Methods Mol Biol; 2012; 867():97-116. PubMed ID: 22454057
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Prednisolone treatment does not interfere with 2'-O-methyl phosphorothioate antisense-mediated exon skipping in Duchenne muscular dystrophy.
    Verhaart IE; Heemskerk H; Karnaoukh TG; Kolfschoten IG; Vroon A; van Ommen GJ; van Deutekom JC; Aartsma-Rus A
    Hum Gene Ther; 2012 Mar; 23(3):262-73. PubMed ID: 22017442
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Dose-dependent pharmacokinetic profiles of 2'-O-methyl phosphorothioate antisense oligonucleotidesin mdx mice.
    Verhaart IE; Tanganyika-de Winter CL; Karnaoukh TG; Kolfschoten IG; de Kimpe SJ; van Deutekom JC; Aartsma-Rus A
    Nucleic Acid Ther; 2013 Jun; 23(3):228-37. PubMed ID: 23634945
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 27.