These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 19796637)

  • 1. Structure, mechanism and engineering of plant natural product glycosyltransferases.
    Wang X
    FEBS Lett; 2009 Oct; 583(20):3303-9. PubMed ID: 19796637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structural Determination of Uridine Diphosphate Glycosyltransferases Using X-Ray Crystallography.
    Alderete K; Wang X
    Methods Mol Biol; 2022; 2396():227-241. PubMed ID: 34786687
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Crystal structures of plant uridine diphosphate-dependent glycosyltransferases].
    Lü H; Xue F; Liu C; Yang M; Ma L
    Sheng Wu Gong Cheng Xue Bao; 2014 Jun; 30(6):838-47. PubMed ID: 25212002
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Glycosyltransferases in plant natural product synthesis: characterization of a supergene family.
    Vogt T; Jones P
    Trends Plant Sci; 2000 Sep; 5(9):380-6. PubMed ID: 10973093
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Sweet Side of Plant-Specialized Metabolism.
    Louveau T; Osbourn A
    Cold Spring Harb Perspect Biol; 2019 Dec; 11(12):. PubMed ID: 31235546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leloir glycosyltransferases of natural product C-glycosylation: structure, mechanism and specificity.
    Tegl G; Nidetzky B
    Biochem Soc Trans; 2020 Aug; 48(4):1583-1598. PubMed ID: 32657344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Two Novel Fungal Phenolic UDP Glycosyltransferases from Absidia coerulea and Rhizopus japonicus.
    Xie K; Dou X; Chen R; Chen D; Fang C; Xiao Z; Dai J
    Appl Environ Microbiol; 2017 Apr; 83(8):. PubMed ID: 28159792
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure-based enzyme engineering improves donor-substrate recognition of Arabidopsis thaliana glycosyltransferases.
    Akere A; Chen SH; Liu X; Chen Y; Dantu SC; Pandini A; Bhowmik D; Haider S
    Biochem J; 2020 Aug; 477(15):2791-2805. PubMed ID: 32657326
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Ambidextrous Polyphenol Glycosyltransferase
    Maharjan R; Fukuda Y; Shimomura N; Nakayama T; Okimoto Y; Kawakami K; Nakayama T; Hamada H; Inoue T; Ozaki SI
    Biochemistry; 2020 Jul; 59(27):2551-2561. PubMed ID: 32525309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural modeling of two plant UDP-dependent sugar-sugar glycosyltransferases reveals a conserved glutamic acid residue that is a hallmark for sugar acceptor recognition.
    Brandt W; Schulze E; Liberman-Aloni R; Bartelt R; Pienkny S; Carmeli-Weissberg M; Frydman A; Eyal Y
    J Struct Biol; 2021 Sep; 213(3):107777. PubMed ID: 34391905
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expanding the promiscuity of a natural-product glycosyltransferase by directed evolution.
    Williams GJ; Zhang C; Thorson JS
    Nat Chem Biol; 2007 Oct; 3(10):657-62. PubMed ID: 17828251
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Substrate specificity of plant UDP-dependent glycosyltransferases predicted from crystal structures and homology modeling.
    Osmani SA; Bak S; Møller BL
    Phytochemistry; 2009 Feb; 70(3):325-47. PubMed ID: 19217634
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structures of glycosyltransferase UGT78G1 reveal the molecular basis for glycosylation and deglycosylation of (iso)flavonoids.
    Modolo LV; Li L; Pan H; Blount JW; Dixon RA; Wang X
    J Mol Biol; 2009 Oct; 392(5):1292-302. PubMed ID: 19683002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular characterization of UGT94F2 and UGT86C4, two glycosyltransferases from Picrorhiza kurrooa: comparative structural insight and evaluation of substrate recognition.
    Bhat WW; Dhar N; Razdan S; Rana S; Mehra R; Nargotra A; Dhar RS; Ashraf N; Vishwakarma R; Lattoo SK
    PLoS One; 2013; 8(9):e73804. PubMed ID: 24066073
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phylogenomic analysis of UDP-dependent glycosyltransferases provides insights into the evolutionary landscape of glycosylation in plant metabolism.
    Wilson AE; Tian L
    Plant J; 2019 Dec; 100(6):1273-1288. PubMed ID: 31446648
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chapter 12. The power of glycosyltransferases to generate bioactive natural compounds.
    Härle J; Bechthold A
    Methods Enzymol; 2009; 458():309-33. PubMed ID: 19374988
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural dissection of unnatural ginsenoside-biosynthetic UDP-glycosyltransferase Bs-YjiC from Bacillus subtilis for substrate promiscuity.
    Dai L; Qin L; Hu Y; Huang JW; Hu Z; Min J; Sun Y; Guo RT
    Biochem Biophys Res Commun; 2021 Jan; 534():73-78. PubMed ID: 33310191
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystal structure of Medicago truncatula UGT85H2--insights into the structural basis of a multifunctional (iso)flavonoid glycosyltransferase.
    Li L; Modolo LV; Escamilla-Trevino LL; Achnine L; Dixon RA; Wang X
    J Mol Biol; 2007 Jul; 370(5):951-63. PubMed ID: 17553523
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biotechnological advances in UDP-sugar based glycosylation of small molecules.
    De Bruyn F; Maertens J; Beauprez J; Soetaert W; De Mey M
    Biotechnol Adv; 2015; 33(2):288-302. PubMed ID: 25698505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Change of Bacillus cereus flavonoid O-triglucosyltransferase into flavonoid O-monoglucosyltransferase by error-prone polymerase chain reaction.
    Jung NR; Joe EJ; Kim BG; Ahn BC; Park JC; Chong Y; Ahn JH
    J Microbiol Biotechnol; 2010 Oct; 20(10):1393-6. PubMed ID: 21030823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.