These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 19796683)

  • 21. Development of a dual approach to assess powder flow from avalanching behavior.
    Lee YS; Poynter R; Podczeck F; Newton JM
    AAPS PharmSciTech; 2000 Jul; 1(3):E21. PubMed ID: 14727907
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving powder flow properties of a cohesive lactose monohydrate powder by intensive mechanical dry coating.
    Zhou Q; Armstrong B; Larson I; Stewart PJ; Morton DA
    J Pharm Sci; 2010 Feb; 99(2):969-81. PubMed ID: 19795479
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Composite method to quantify powder flow as a screening method in early tablet or capsule formulation development.
    Taylor MK; Ginsburg J; Hickey A; Gheyas F
    AAPS PharmSciTech; 2000 Jun; 1(3):E18. PubMed ID: 14727904
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Flow characterization of a pharmaceutical excipient using the shear cell method.
    Salústio PJ; Inácio C; Nunes T; Sousa E Silva JP; Costa PC
    Pharm Dev Technol; 2020 Feb; 25(2):237-244. PubMed ID: 31718375
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Understanding the effect of lactose particle size on the properties of DPI formulations using experimental design.
    Guenette E; Barrett A; Kraus D; Brody R; Harding L; Magee G
    Int J Pharm; 2009 Oct; 380(1-2):80-8. PubMed ID: 19596428
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A predictive integrated framework based on the radial basis function for the modelling of the flow of pharmaceutical powders.
    Alshafiee M; AlAlaween WH; Markl D; Soundaranathan M; Almajaan A; Walton K; Blunt L; Asare-Addo K
    Int J Pharm; 2019 Sep; 568():118542. PubMed ID: 31330171
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improvement of flow and bulk density of pharmaceutical powders using surface modification.
    Jallo LJ; Ghoroi C; Gurumurthy L; Patel U; Davé RN
    Int J Pharm; 2012 Feb; 423(2):213-25. PubMed ID: 22197769
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effective modification of particle surface properties using ultrasonic water mist.
    Genina N; Räikkönen H; Heinämäki J; Antikainen O; Siiriä S; Veski P; Yliruusi J
    AAPS PharmSciTech; 2009; 10(1):282-8. PubMed ID: 19288203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Development of a micro dosing system for fine powder using a vibrating capillary. Part 1: the investigation of factors influencing on the dosing performance.
    Chen X; Seyfang K; Steckel H
    Int J Pharm; 2012 Aug; 433(1-2):34-41. PubMed ID: 22595639
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Physicochemical and in vitro deposition properties of salbutamol sulphate/ipratropium bromide and salbutamol sulphate/excipient spray dried mixtures for use in dry powder inhalers.
    Corrigan DO; Corrigan OI; Healy AM
    Int J Pharm; 2006 Sep; 322(1-2):22-30. PubMed ID: 16815654
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Adhesion and redistribution of salmeterol xinafoate particles in sugar-based mixtures for inhalation.
    Adi H; Larson I; Stewart PJ
    Int J Pharm; 2007 Jun; 337(1-2):229-38. PubMed ID: 17303354
    [TBL] [Abstract][Full Text] [Related]  

  • 32. New methods characterizing avalanche behavior to determine powder flow.
    Lavoie F; Cartilier L; Thibert R
    Pharm Res; 2002 Jun; 19(6):887-93. PubMed ID: 12134962
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The compressibility and compactibility of different types of lactose.
    Ilić I; Kása P; Dreu R; Pintye-Hódi K; Srcic S
    Drug Dev Ind Pharm; 2009 Oct; 35(10):1271-80. PubMed ID: 19466896
    [TBL] [Abstract][Full Text] [Related]  

  • 34. On the relationship of inter-particle cohesiveness and bulk powder behavior: Flowability of pharmaceutical powders.
    Capece M; Silva KR; Sunkara D; Strong J; Gao P
    Int J Pharm; 2016 Sep; 511(1):178-189. PubMed ID: 27353729
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Linking flowability and granulometry of lactose powders.
    Boschini F; Delaval V; Traina K; Vandewalle N; Lumay G
    Int J Pharm; 2015 Oct; 494(1):312-20. PubMed ID: 26283279
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Flow rate and flow equation of pharmaceutical free-flowable powder excipients.
    Sklubalová Z; Zatloukal Z
    Pharm Dev Technol; 2013 Feb; 18(1):106-11. PubMed ID: 22149908
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Powder flow in an automated uniaxial tester and an annular shear cell: a study of pharmaceutical excipients and analytical data comparison.
    Kuentz M; Schirg P
    Drug Dev Ind Pharm; 2013 Sep; 39(9):1476-83. PubMed ID: 23043592
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effervescent dry powder for respiratory drug delivery.
    Ely L; Roa W; Finlay WH; Löbenberg R
    Eur J Pharm Biopharm; 2007 Mar; 65(3):346-53. PubMed ID: 17156987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the Methods to Measure Powder Flow.
    Tan G; Morton DA; Larson I
    Curr Pharm Des; 2015; 21(40):5751-65. PubMed ID: 26446467
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Comprehensive powder flow characterization with reduced testing.
    Chendo C; Pinto JF; Paisana MC
    Int J Pharm; 2023 Jul; 642():123107. PubMed ID: 37279868
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.