BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 1979669)

  • 1. Depolarizing pulses to neuromuscular terminals of frogs can elicit graded, phasic transmitter release in the absence of Ca influx.
    Dudel J
    Neurosci Lett; 1990 Aug; 116(1-2):94-100. PubMed ID: 1979669
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Contribution of Ca2+ inflow to quantal, phasic transmitter release from nerve terminals of frog muscle.
    Dudel J
    Pflugers Arch; 1992 Nov; 422(2):129-42. PubMed ID: 1362607
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of Ca2+ inflow at nerve terminals of frog muscle blocks facilitation while phasic transmitter release is still considerable.
    Dudel J
    Pflugers Arch; 1990 Feb; 415(5):566-74. PubMed ID: 1970158
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evoked phasic release in frog nerve terminals obtained after block of Ca2+ entry by Cd2+.
    Dudel J; Parnas H; Parnas I
    Pflugers Arch; 1991 Sep; 419(2):197-204. PubMed ID: 1660129
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calcium and depolarization dependence of twin-pulse facilitation of synaptic release at nerve terminals of crayfish and frog muscle.
    Dudel J
    Pflugers Arch; 1989 Dec; 415(3):304-9. PubMed ID: 2576122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Depolarization dependence of the kinetics of phasic transmitter release at the crayfish neuromuscular junction.
    Parnas I; Dudel J; Parnas H
    Neurosci Lett; 1984 Sep; 50(1-3):157-62. PubMed ID: 6149501
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Transmitter release by graded local depolarization of presynaptic nerve terminals at the crayfish neuromuscular junction.
    Dudel J
    Neurosci Lett; 1982 Oct; 32(2):181-6. PubMed ID: 6128705
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Shifts in the voltage dependence of synaptic release due to changes in the extracellular calcium concentration at nerve terminals on muscle of crayfish and frogs.
    Dudel J
    Pflugers Arch; 1989 Dec; 415(3):299-303. PubMed ID: 2576121
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Neurotransmitter release and its facilitation in crayfish. VII. Another voltage dependent process beside Ca entry controls the time course of phasic release.
    Parnas H; Dudel J; Parnas I
    Pflugers Arch; 1986 Feb; 406(2):121-30. PubMed ID: 2421235
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Control of quantal transmitter release at frog's motor nerve terminals. II. Modulation by de- or hyperpolarizing pulses.
    Dudel J
    Pflugers Arch; 1984 Nov; 402(3):235-43. PubMed ID: 6151643
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Twin pulse facilitation in dependence on pulse duration and calcium concentration at motor nerve terminals of crayfish and frogs.
    Dudel J
    Pflugers Arch; 1989 Dec; 415(3):310-5. PubMed ID: 2576123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Changes of quantal transmitter release caused by gadolinium ions at the frog neuromuscular junction.
    Molgó J; del Pozo E; Baños JE; Angaut-Petit D
    Br J Pharmacol; 1991 Sep; 104(1):133-8. PubMed ID: 1686201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Calcium dependence of quantal release triggered by graded depolarization pulses to nerve terminals on crayfish and frog muscle.
    Dudel J
    Pflugers Arch; 1989 Dec; 415(3):289-98. PubMed ID: 2576120
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantal currents evoked by graded intracellular depolarization of crayfish motor axon terminals.
    Atwood HL; Parnas H; Parnas I; Wojtowicz JM
    J Physiol; 1987 Feb; 383():587-99. PubMed ID: 2888878
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dependence of spontaneous release at frog junctions on synaptic strength, external calcium and terminal length.
    Grinnell AD; Pawson PA
    J Physiol; 1989 Nov; 418():397-410. PubMed ID: 2576068
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transmitter release at mouse motor nerve terminals mediated by temporary accumulation of intracellular barium.
    Quastel DM; Saint DA
    J Physiol; 1988 Dec; 406():55-73. PubMed ID: 2908184
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of botulinum toxin on neuromuscular transmission in the rat.
    Cull-Candy SG; Lundh H; Thesleff S
    J Physiol; 1976 Aug; 260(1):177-203. PubMed ID: 184273
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calcium-independent regulation of transmitter release at the frog neuromuscular junction.
    Kijima H; Tanabe N; Sato J; Kijima S
    Ann N Y Acad Sci; 1993 Dec; 707():443-6. PubMed ID: 9137590
    [No Abstract]   [Full Text] [Related]  

  • 19. The mode of action of 4-aminopyridine and guanidine on transmitter release from motor nerve terminals.
    Lundh H; Thesleff S
    Eur J Pharmacol; 1977 Apr; 42(4):411-2. PubMed ID: 15849
    [No Abstract]   [Full Text] [Related]  

  • 20. Neurotransmitter release and its facilitation in crayfish muscle. VI. Release determined by both, intracellular calcium concentration and depolarization of the nerve terminal.
    Dudel J; Parnas I; Parnas H
    Pflugers Arch; 1983 Sep; 399(1):1-10. PubMed ID: 6139784
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.