BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 19796977)

  • 1. [Isolation of wood-decaying fungi and evaluation of their enzymatic activity (Quindío, Colombia)].
    Chaparro DF; Rosas DC; Varela A
    Rev Iberoam Micol; 2009 Dec; 26(4):238-43. PubMed ID: 19796977
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Selection and validation of enzymatic activities as functional markers in wood biotechnology and fungal ecology.
    Mathieu Y; Gelhaye E; Dumarçay S; Gérardin P; Harvengt L; Buée M
    J Microbiol Methods; 2013 Feb; 92(2):157-63. PubMed ID: 23206919
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lignin-modifying enzymes in filamentous basidiomycetes--ecological, functional and phylogenetic review.
    Lundell TK; Mäkelä MR; Hildén K
    J Basic Microbiol; 2010 Feb; 50(1):5-20. PubMed ID: 20175122
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple assay for measuring cellobiose dehydrogenase activity in the presence of laccase.
    Baminger U; Nidetzky B; Kulbe KD; Haltrich D
    J Microbiol Methods; 1999 Apr; 35(3):253-9. PubMed ID: 10333077
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatiotemporal Patterns of Laccase Activity in Interacting Mycelia of Wood-Decaying Basidiomycete Fungi.
    Iakovlev A; Stenlid J
    Microb Ecol; 2000 Apr; 39(3):236-245. PubMed ID: 12035100
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Properties of neutral cellobiose dehydrogenase from the ascomycete Chaetomium sp. INBI 2-26(-) and comparison with basidiomycetous cellobiose dehydrogenases.
    Karapetyan KN; Fedorova TV; Vasil'chenko LG; Ludwig R; Haltrich D; Rabinovich ML
    J Biotechnol; 2006 Jan; 121(1):34-48. PubMed ID: 16112765
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interactions affect hyphal growth and enzyme profiles in combinations of coniferous wood-decaying fungi of Agaricomycetes.
    Mali T; Kuuskeri J; Shah F; Lundell TK
    PLoS One; 2017; 12(9):e0185171. PubMed ID: 28953947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.
    Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D
    Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027
    [TBL] [Abstract][Full Text] [Related]  

  • 9. [Degradation of lignin-carbohydrate substrate by soil fungi--producers of laccase and cellobiose dehydrogenase].
    Vasil'chenko LG; Karapetian KN; Iachkova SN; ernova ES; Rabinovich ML
    Prikl Biokhim Mikrobiol; 2004; 40(1):51-6. PubMed ID: 15029698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Screening for thermotolerant ligninolytic fungi with laccase, lipase, and protease activity isolated in Mexico.
    Cruz Ramírez MG; Rivera-Ríos JM; Téllez-Jurado A; Maqueda Gálvez AP; Mercado-Flores Y; Arana-Cuenca A
    J Environ Manage; 2012 Mar; 95 Suppl():S256-9. PubMed ID: 21074935
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural change in wood by brown rot fungi and effect on enzymatic hydrolysis.
    Monrroy M; Ortega I; Ramírez M; Baeza J; Freer J
    Enzyme Microb Technol; 2011 Oct; 49(5):472-7. PubMed ID: 22112620
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differences in crystalline cellulose modification due to degradation by brown and white rot fungi.
    Hastrup AC; Howell C; Larsen FH; Sathitsuksanoh N; Goodell B; Jellison J
    Fungal Biol; 2012 Oct; 116(10):1052-63. PubMed ID: 23063184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wood and humus decay strategies by white-rot basidiomycetes correlate with two different dye decolorization and enzyme secretion patterns on agar plates.
    Barrasa JM; Blanco MN; Esteve-Raventós F; Altés A; Checa J; Martínez AT; Ruiz-Dueñas FJ
    Fungal Genet Biol; 2014 Nov; 72():106-114. PubMed ID: 24726546
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Morphology and laccase production of white-rot fungi grown on wheat bran flakes under semi-solid-state fermentation conditions.
    Osma JF; Moilanen U; Toca-Herrera JL; Rodríguez-Couto S
    FEMS Microbiol Lett; 2011 May; 318(1):27-34. PubMed ID: 21291496
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in oxidative enzyme activity during interspecific mycelial interactions involving the white-rot fungus Trametes versicolor.
    Hiscox J; Baldrian P; Rogers HJ; Boddy L
    Fungal Genet Biol; 2010 Jun; 47(6):562-71. PubMed ID: 20371297
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wood decomposing abilities of diverse lignicolous fungi on nondecayed and decayed beech wood.
    Fukasawa Y; Osono T; Takeda H
    Mycologia; 2011; 103(3):474-82. PubMed ID: 21262989
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High-throughput screening for cellobiose dehydrogenases by Prussian Blue in situ formation.
    Vasilchenko LG; Ludwig R; Yershevich OP; Haltrich D; Rabinovich ML
    Biotechnol J; 2012 Jul; 7(7):919-30. PubMed ID: 22294389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interference of laccase in determination of cellobiose dehydrogenase activity of Pleurotus ostreatus (Florida) using dichlorophenol indophenol as the electron acceptor.
    Saha T; Chakraborty TK; Saha R; Das N; Mukherjee M
    J Basic Microbiol; 2005; 45(2):142-6. PubMed ID: 15812859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fungal laccase, cellobiose dehydrogenase, and chemical mediators: combined actions for the decolorization of different classes of textile dyes.
    Ciullini I; Tilli S; Scozzafava A; Briganti F
    Bioresour Technol; 2008 Oct; 99(15):7003-10. PubMed ID: 18281211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ligninolytic fungal laccases and their biotechnological applications.
    Singh Arora D; Kumar Sharma R
    Appl Biochem Biotechnol; 2010 Mar; 160(6):1760-88. PubMed ID: 19513857
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.