These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 19796990)

  • 21. Skeletal muscle mitochondrial energetics in obesity and type 2 diabetes mellitus: endocrine aspects.
    Aguer C; Harper ME
    Best Pract Res Clin Endocrinol Metab; 2012 Dec; 26(6):805-19. PubMed ID: 23168281
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Skeletal muscle insulin resistance: role of mitochondria and other ROS sources.
    Di Meo S; Iossa S; Venditti P
    J Endocrinol; 2017 Apr; 233(1):R15-R42. PubMed ID: 28232636
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrial H
    Formentini L; Ryan AJ; Gálvez-Santisteban M; Carter L; Taub P; Lapek JD; Gonzalez DJ; Villarreal F; Ciaraldi TP; Cuezva JM; Henry RR
    Diabetologia; 2017 Oct; 60(10):2052-2065. PubMed ID: 28770317
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondrial dysfunction results from oxidative stress in the skeletal muscle of diet-induced insulin-resistant mice.
    Bonnard C; Durand A; Peyrol S; Chanseaume E; Chauvin MA; Morio B; Vidal H; Rieusset J
    J Clin Invest; 2008 Feb; 118(2):789-800. PubMed ID: 18188455
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Mitochondrial biogenesis: pharmacological approaches.
    Valero T
    Curr Pharm Des; 2014; 20(35):5507-9. PubMed ID: 24606795
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Cytosolic lipid excess-induced mitochondrial dysfunction is the cause or effect of high fat diet-induced skeletal muscle insulin resistance: a molecular insight.
    Jana BA; Chintamaneni PK; Krishnamurthy PT; Wadhwani A; Mohankumar SK
    Mol Biol Rep; 2019 Feb; 46(1):957-963. PubMed ID: 30535784
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mitochondrial myopathies.
    DiMauro S
    Curr Opin Rheumatol; 2006 Nov; 18(6):636-41. PubMed ID: 17053512
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Tissue-specific control of mitochondrial respiration in obesity-related insulin resistance and diabetes.
    Holmström MH; Iglesias-Gutierrez E; Zierath JR; Garcia-Roves PM
    Am J Physiol Endocrinol Metab; 2012 Mar; 302(6):E731-9. PubMed ID: 22252943
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular basis for treatment of mitochondrial myopathies.
    Taylor RW; Wardell TM; Lightowlers RN; Turnbull DM
    Neurol Sci; 2000; 21(5 Suppl):S909-12. PubMed ID: 11382188
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Mitochondrial defects in cardiomyopathy and neuromuscular disease.
    Wallace DC
    Am Heart J; 2000 Feb; 139(2 Pt 3):S70-85. PubMed ID: 10650320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Sarcopenic Obesity, Insulin Resistance, and Their Implications in Cardiovascular and Metabolic Consequences.
    Hong SH; Choi KM
    Int J Mol Sci; 2020 Jan; 21(2):. PubMed ID: 31941015
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Defects in skeletal muscle subsarcolemmal mitochondria in a non-obese model of type 2 diabetes mellitus.
    Lai N; Kummitha C; Hoppel C
    PLoS One; 2017; 12(8):e0183978. PubMed ID: 28850625
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Decrement in resting and insulin-stimulated soleus muscle mitochondrial respiration is an early event in diet-induced obesity in mice.
    Brunetta HS; de Paula GC; de Oliveira J; Martins EL; Dos Santos GJ; Galina A; Rafacho A; de Bem AF; Nunes EA
    Exp Physiol; 2019 Mar; 104(3):306-321. PubMed ID: 30578638
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle.
    Ukropcova B; Sereda O; de Jonge L; Bogacka I; Nguyen T; Xie H; Bray GA; Smith SR
    Diabetes; 2007 Mar; 56(3):720-7. PubMed ID: 17327442
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Alterations of Mitochondrial Function and Insulin Sensitivity in Human Obesity and Diabetes Mellitus.
    Koliaki C; Roden M
    Annu Rev Nutr; 2016 Jul; 36():337-67. PubMed ID: 27146012
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Skeletal muscle mitochondrial and metabolic responses to a high-fat diet in female rats bred for high and low aerobic capacity.
    Naples SP; Borengasser SJ; Rector RS; Uptergrove GM; Morris EM; Mikus CR; Koch LG; Britton SL; Ibdah JA; Thyfault JP
    Appl Physiol Nutr Metab; 2010 Apr; 35(2):151-62. PubMed ID: 20383225
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Metabolic control analysis and threshold effect in oxidative phosphorylation: implications for mitochondrial pathologies.
    Mazat JP; Letellier T; Bédes F; Malgat M; Korzeniewski B; Jouaville LS; Morkuniene R
    Mol Cell Biochem; 1997 Sep; 174(1-2):143-8. PubMed ID: 9309679
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biochemical studies of isolated mitochondria from normal and diseased tissues.
    Lee CP
    Biochim Biophys Acta; 1995 May; 1271(1):21-8. PubMed ID: 7599210
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A discordance in rosiglitazone mediated insulin sensitization and skeletal muscle mitochondrial content/activity in Type 2 diabetes mellitus.
    Pagel-Langenickel I; Schwartz DR; Arena RA; Minerbi DC; Johnson DT; Waclawiw MA; Cannon RO; Balaban RS; Tripodi DJ; Sack MN
    Am J Physiol Heart Circ Physiol; 2007 Nov; 293(5):H2659-66. PubMed ID: 17890427
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Control of oxidative phosphorylation in skeletal muscle.
    Kunz WS
    Biochim Biophys Acta; 2001 Mar; 1504(1):12-9. PubMed ID: 11239481
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.