These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 19797622)

  • 1. Probing the magnetic field of light at optical frequencies.
    Burresi M; van Oosten D; Kampfrath T; Schoenmaker H; Heideman R; Leinse A; Kuipers L
    Science; 2009 Oct; 326(5952):550-3. PubMed ID: 19797622
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Magnetic field concentrator for probing optical magnetic metamaterials.
    Antosiewicz TJ; Wróbel P; Szoplik T
    Opt Express; 2010 Dec; 18(25):25906-11. PubMed ID: 21164936
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Full vectorial imaging of electromagnetic light at subwavelength scale.
    Grosjean T; Ibrahim IA; Suarez MA; Burr GW; Mivelle M; Charraut D
    Opt Express; 2010 Mar; 18(6):5809-24. PubMed ID: 20389598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resolution enhancing using cantilevered tip-on-aperture silicon probe in scanning near-field optical microscopy.
    Chang WS; Bauerdick S; Jeong MS
    Ultramicroscopy; 2008 Sep; 108(10):1070-5. PubMed ID: 18579310
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep-subwavelength imaging of both electric and magnetic localized optical fields by plasmonic campanile nanoantenna.
    Caselli N; La China F; Bao W; Riboli F; Gerardino A; Li L; Linfield EH; Pagliano F; Fiore A; Schuck PJ; Cabrini S; Weber-Bargioni A; Gurioli M; Intonti F
    Sci Rep; 2015 Jun; 5():9606. PubMed ID: 26045401
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the optimum form of an aperture for a confinement of the optically excited electric near field.
    Bortchagovsky E; Colas des Francs G; Naber A; Fischer UC
    J Microsc; 2008 Feb; 229(Pt 2):223-7. PubMed ID: 18304076
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical magnetic field mapping using a subwavelength aperture.
    Kihm HW; Kim J; Koo S; Ahn J; Ahn K; Lee K; Park N; Kim DS
    Opt Express; 2013 Mar; 21(5):5625-33. PubMed ID: 23482134
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Near-field probing the magnetic field vector of visible light with a silicon nanoparticle probe and nanopolarimetry.
    Sun L; Bai B; Meng X; Cui T; Shang G; Wang J
    Opt Express; 2018 Sep; 26(19):24637-24652. PubMed ID: 30469577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 'Trapped rainbow' storage of light in metamaterials.
    Tsakmakidis KL; Boardman AD; Hess O
    Nature; 2007 Nov; 450(7168):397-401. PubMed ID: 18004380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Probing electric and magnetic vacuum fluctuations with quantum dots.
    Tighineanu P; Andersen ML; Sørensen AS; Stobbe S; Lodahl P
    Phys Rev Lett; 2014 Jul; 113(4):043601. PubMed ID: 25105618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modeling of near-field optical diffraction from a subwavelength aperture in a thin conducting film.
    Wu JH
    Opt Lett; 2011 Sep; 36(17):3440-2. PubMed ID: 21886237
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Confining standing waves in optical corrals.
    Babayan Y; McMahon JM; Li S; Gray SK; Schatz GC; Odom TW
    ACS Nano; 2009 Mar; 3(3):615-20. PubMed ID: 19243190
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials.
    Engheta N
    Science; 2007 Sep; 317(5845):1698-702. PubMed ID: 17885123
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Multi-frequency near-field scanning optical microscopy.
    Kohlgraf-Owens DC; Greusard L; Sukhov S; Wilde YD; Dogariu A
    Nanotechnology; 2014 Jan; 25(3):035203. PubMed ID: 24346240
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bethe-hole polarization analyser for the magnetic vector of light.
    Kihm HW; Koo SM; Kim QH; Bao K; Kihm JE; Bak WS; Eah SH; Lienau C; Kim H; Nordlander P; Halas NJ; Park NK; Kim DS
    Nat Commun; 2011 Aug; 2():451. PubMed ID: 21863018
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-resolution nuclear magnetic resonance spectroscopy in a circularly polarized laser beam.
    Buckingham AD; Parlett LC
    Science; 1994 Jun; 264(5166):1748-50. PubMed ID: 17839909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mapping the Magnetic Field Intensity of Light with the Nonlinear Optical Emission of a Silicon Nanoparticle.
    Li GC; Xiang J; Zhang YL; Deng F; Panmai M; Zhuang W; Lan S; Lei D
    Nano Lett; 2021 Mar; 21(6):2453-2460. PubMed ID: 33651622
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Imaging of electric and magnetic fields near plasmonic nanowires.
    Kabakova IV; de Hoogh A; van der Wel RE; Wulf M; le Feber B; Kuipers L
    Sci Rep; 2016 Mar; 6():22665. PubMed ID: 26947124
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The inner jet of an active galactic nucleus as revealed by a radio-to-gamma-ray outburst.
    Marscher AP; Jorstad SG; D'Arcangelo FD; Smith PS; Williams GG; Larionov VM; Oh H; Olmstead AR; Aller MF; Aller HD; McHardy IM; Lähteenmäki A; Tornikoski M; Valtaoja E; Hagen-Thorn VA; Kopatskaya EN; Gear WK; Tosti G; Kurtanidze O; Nikolashvili M; Sigua L; Miller HR; Ryle WT
    Nature; 2008 Apr; 452(7190):966-9. PubMed ID: 18432239
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative model for near-field scanning microwave microscopy: application to metrology of thin film dielectrics.
    Reznik AN; Talanov VV
    Rev Sci Instrum; 2008 Nov; 79(11):113708. PubMed ID: 19045896
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.