These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 19797691)
1. Effects of heat stress on dynamic cerebral autoregulation during large fluctuations in arterial blood pressure. Brothers RM; Zhang R; Wingo JE; Hubing KA; Crandall CG J Appl Physiol (1985); 2009 Dec; 107(6):1722-9. PubMed ID: 19797691 [TBL] [Abstract][Full Text] [Related]
2. Dynamic cerebral autoregulation during passive heat stress in humans. Low DA; Wingo JE; Keller DM; Davis SL; Cui J; Zhang R; Crandall CG Am J Physiol Regul Integr Comp Physiol; 2009 May; 296(5):R1598-605. PubMed ID: 19279292 [TBL] [Abstract][Full Text] [Related]
3. Directional sensitivity of the cerebral pressure-flow relationship during forced oscillations induced by oscillatory lower body negative pressure. Labrecque L; Roy MA; Soleimani Dehnavi S; Taghizadeh M; Smirl JD; Brassard P J Cereb Blood Flow Metab; 2024 Oct; 44(10):1827-1839. PubMed ID: 38613236 [TBL] [Abstract][Full Text] [Related]
4. Cerebral autoregulation is compromised during simulated fluctuations in gravitational stress. Brown CM; Dütsch M; Ohring S; Neundörfer B; Hilz MJ Eur J Appl Physiol; 2004 Mar; 91(2-3):279-86. PubMed ID: 14574578 [TBL] [Abstract][Full Text] [Related]
5. Coupling between arterial pressure, cerebral blood velocity, and cerebral tissue oxygenation with spontaneous and forced oscillations. Rickards CA; Sprick JD; Colby HB; Kay VL; Tzeng YC Physiol Meas; 2015 Apr; 36(4):785-801. PubMed ID: 25798890 [TBL] [Abstract][Full Text] [Related]
6. Oscillatory lower body negative pressure impairs task related functional hyperemia in healthy volunteers. Stewart JM; Balakrishnan K; Visintainer P; Del Pozzi AT; Messer ZR; Terilli C; Medow MS Am J Physiol Heart Circ Physiol; 2016 Mar; 310(6):H775-84. PubMed ID: 26801310 [TBL] [Abstract][Full Text] [Related]
7. Human cerebral autoregulation before, during and after spaceflight. Iwasaki K; Levine BD; Zhang R; Zuckerman JH; Pawelczyk JA; Diedrich A; Ertl AC; Cox JF; Cooke WH; Giller CA; Ray CA; Lane LD; Buckey JC; Baisch FJ; Eckberg DL; Robertson D; Biaggioni I; Blomqvist CG J Physiol; 2007 Mar; 579(Pt 3):799-810. PubMed ID: 17185344 [TBL] [Abstract][Full Text] [Related]
8. Relationship between blood pressure and cerebral blood flow during supine cycling: influence of aging. Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN J Appl Physiol (1985); 2016 Mar; 120(5):552-63. PubMed ID: 26586907 [TBL] [Abstract][Full Text] [Related]
9. The magnitude of heat stress-induced reductions in cerebral perfusion does not predict heat stress-induced reductions in tolerance to a simulated hemorrhage. Lee JF; Harrison ML; Brown SR; Brothers RM J Appl Physiol (1985); 2013 Jan; 114(1):37-44. PubMed ID: 23139368 [TBL] [Abstract][Full Text] [Related]
10. Spectral indices of human cerebral blood flow control: responses to augmented blood pressure oscillations. Hamner JW; Cohen MA; Mukai S; Lipsitz LA; Taylor JA J Physiol; 2004 Sep; 559(Pt 3):965-73. PubMed ID: 15254153 [TBL] [Abstract][Full Text] [Related]
11. Oscillatory lower body negative pressure impairs working memory task-related functional hyperemia in healthy volunteers. Merchant S; Medow MS; Visintainer P; Terilli C; Stewart JM Am J Physiol Heart Circ Physiol; 2017 Apr; 312(4):H672-H680. PubMed ID: 28159806 [TBL] [Abstract][Full Text] [Related]
12. Endotoxemia reduces cerebral perfusion but enhances dynamic cerebrovascular autoregulation at reduced arterial carbon dioxide tension. Brassard P; Kim YS; van Lieshout J; Secher NH; Rosenmeier JB Crit Care Med; 2012 Jun; 40(6):1873-8. PubMed ID: 22610190 [TBL] [Abstract][Full Text] [Related]
13. Dynamic cerebral autoregulation is intact in chronic kidney disease. Sprick JD; Jones T; Jeong J; DaCosta D; Park J Physiol Rep; 2022 Nov; 10(21):e15495. PubMed ID: 36325592 [TBL] [Abstract][Full Text] [Related]
14. Deterioration of cerebral autoregulation during orthostatic stress: insights from the frequency domain. Zhang R; Zuckerman JH; Levine BD J Appl Physiol (1985); 1998 Sep; 85(3):1113-22. PubMed ID: 9729590 [TBL] [Abstract][Full Text] [Related]
15. Heat stress reduces cerebral blood velocity and markedly impairs orthostatic tolerance in humans. Wilson TE; Cui J; Zhang R; Crandall CG Am J Physiol Regul Integr Comp Physiol; 2006 Nov; 291(5):R1443-8. PubMed ID: 16763078 [TBL] [Abstract][Full Text] [Related]
16. The effects of ageing and passive heating on cardiorespiratory and cerebrovascular responses to orthostatic stress in humans. Lucas RA; Cotter JD; Morrison S; Ainslie PN Exp Physiol; 2008 Oct; 93(10):1104-17. PubMed ID: 18515472 [TBL] [Abstract][Full Text] [Related]
17. Methodological comparison of active- and passive-driven oscillations in blood pressure; implications for the assessment of cerebral pressure-flow relationships. Smirl JD; Hoffman K; Tzeng YC; Hansen A; Ainslie PN J Appl Physiol (1985); 2015 Sep; 119(5):487-501. PubMed ID: 26183476 [TBL] [Abstract][Full Text] [Related]
18. Assessing cerebral autoregulation via oscillatory lower body negative pressure and projection pursuit regression. Taylor JA; Tan CO; Hamner JW J Vis Exp; 2014 Dec; (94):. PubMed ID: 25549201 [TBL] [Abstract][Full Text] [Related]
19. Dynamic cerebral autoregulation during repeated handgrip exercise: comparisons with spontaneous rest and sit-stand maneuvers. Qin W; Fukuie M; Hoshi D; Mori S; Tomoto T; Sugawara J; Tarumi T J Appl Physiol (1985); 2024 Sep; 137(3):718-727. PubMed ID: 39116347 [TBL] [Abstract][Full Text] [Related]
20. Cerebral blood flow response to cardiorespiratory oscillations in healthy humans. Holme NLA; Zilakos I; Elstad M; Skytioti M Auton Neurosci; 2023 Mar; 245():103069. PubMed ID: 36584666 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]